文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

巴基斯坦 SARS-CoV-2 德尔塔变异株在第四波大流行期间的冠状病毒基因组和结构蛋白及非结构蛋白中的特有突变。

Coronavirus Genomes and Unique Mutations in Structural and Non-Structural Proteins in Pakistani SARS-CoV-2 Delta Variants during the Fourth Wave of the Pandemic.

机构信息

Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, 1 KM Defence Road, Lahore 58 810, Pakistan.

出版信息

Genes (Basel). 2022 Mar 21;13(3):552. doi: 10.3390/genes13030552.


DOI:10.3390/genes13030552
PMID:35328105
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8951394/
Abstract

Genomic epidemiology of SARS-CoV-2 is imperative to explore the transmission, evolution, and also pathogenicity of viruses. The emergence of SARS-CoV-2 variants of concern posed a severe threat to the global public health efforts. To assess the potential consequence of these emerging variants on public health, continuous molecular epidemiology is of vital importance. The current study has been designed to investigate the major SARS-CoV-2 variants and emerging mutations in virus structural and non-structural proteins (NSP) during the fourth wave in September 2021 from the Punjab province of Pakistan. Twenty SARS-CoV-2 positive samples have been collected from major cities were subjected to next-generation sequencing. Among the 20 whole genomes (GenBank Accession SRR16294858-SRR16294877), 2 samples failed to be completely sequenced. These genome sequences harbored 207 non-synonymous mutations, among which 19 were unique to GISAID. The genome sequences were detected: Delta 21I, 21J variants (B.1.617.2). Mutation's spike_F157del, spike_P681R, spike_T478K, spike_T19R, spike_L452R, spike_D614G, spike_G142D, spike_E156G, and spike_R158del have been detected in all samples where K1086Q, E554K, and C1250W were unique in spike protein. These genomic sequences also harbored 129 non-synonymous mutations in NSP. The most common were NSP3_P1469S (N = 17), NSP3_A488S (N = 17), NSP3_P1228L (N = 17), NSP4_V167L (N = 17), NSP4_T492I (N = 17), NSP6_T77A (N = 17), NSP14_A394V (N = 17), NSP12_G671S (N = 18), and NSP13_P77L (N = 18). The mutation, F313Y in NSP12, detected in the current study, was found in a single isolate from Belgium. Numerous other unique mutations have been detected in the virus papain-like protease (NSP3), main protease (NSP5), and RNA-dependent RNA polymerase (NSP12). The most common non-synonymous mutations in the spike protein were subjected to stability analysis, exhibiting a stabilizing effect on structures. The presence of Delta variants may affect therapeutic efforts and vaccine efficacy. Continuous genomic epidemiology of SARS-CoV-2 in Pakistan may be useful for better management of SARS-CoV-2 infections.

摘要

SARS-CoV-2 的基因组流行病学对于探索病毒的传播、进化和致病性至关重要。SARS-CoV-2 变体的出现对全球公共卫生工作构成了严重威胁。为了评估这些新出现的变体对公共卫生的潜在影响,持续的分子流行病学至关重要。本研究旨在调查 2021 年 9 月巴基斯坦旁遮普省第四次浪潮期间病毒结构和非结构蛋白(NSP)中主要的 SARS-CoV-2 变体和新出现的突变。从主要城市收集了 20 个 SARS-CoV-2 阳性样本进行下一代测序。在 20 个全基因组(GenBank 访问号 SRR16294858-SRR16294877)中,有 2 个样本未能完全测序。这些基因组序列含有 207 个非同义突变,其中 19 个是 GISAID 特有的。基因组序列检测到:Delta 21I、21J 变体(B.1.617.2)。所有样本中均检测到 Spike_F157del、Spike_P681R、Spike_T478K、Spike_T19R、Spike_L452R、Spike_D614G、Spike_G142D、Spike_E156G 和 Spike_R158del 突变,而 Spike 蛋白中的 K1086Q、E554K 和 C1250W 突变是独特的。这些基因组序列还在 NSP 中含有 129 个非同义突变。最常见的是 NSP3_P1469S(N = 17)、NSP3_A488S(N = 17)、NSP3_P1228L(N = 17)、NSP4_V167L(N = 17)、NSP4_T492I(N = 17)、NSP6_T77A(N = 17)、NSP14_A394V(N = 17)、NSP12_G671S(N = 18)和 NSP13_P77L(N = 18)。本研究中检测到的 NSP12 中的 F313Y 突变仅在来自比利时的单个分离株中发现。在病毒木瓜蛋白酶样蛋白酶(NSP3)、主要蛋白酶(NSP5)和 RNA 依赖性 RNA 聚合酶(NSP12)中还检测到许多其他独特的突变。Spike 蛋白中最常见的非同义突变进行了稳定性分析,显示对结构有稳定作用。Delta 变体的存在可能会影响治疗效果和疫苗效力。在巴基斯坦持续进行 SARS-CoV-2 的基因组流行病学研究可能有助于更好地管理 SARS-CoV-2 感染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdaa/8951394/3f273f309c37/genes-13-00552-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdaa/8951394/3f43f3fc556f/genes-13-00552-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdaa/8951394/97b04b699a9e/genes-13-00552-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdaa/8951394/8713512e0971/genes-13-00552-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdaa/8951394/5ac44c271c87/genes-13-00552-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdaa/8951394/a95161df90f5/genes-13-00552-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdaa/8951394/3f273f309c37/genes-13-00552-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdaa/8951394/3f43f3fc556f/genes-13-00552-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdaa/8951394/97b04b699a9e/genes-13-00552-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdaa/8951394/8713512e0971/genes-13-00552-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdaa/8951394/5ac44c271c87/genes-13-00552-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdaa/8951394/a95161df90f5/genes-13-00552-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdaa/8951394/3f273f309c37/genes-13-00552-g006.jpg

相似文献

[1]
Coronavirus Genomes and Unique Mutations in Structural and Non-Structural Proteins in Pakistani SARS-CoV-2 Delta Variants during the Fourth Wave of the Pandemic.

Genes (Basel). 2022-3-21

[2]
SARS-CoV-2 intrahost evolution in immunocompromised patients in comparison with immunocompetent populations after treatment.

J Med Virol. 2023-6

[3]
Genomic diversity of SARS-CoV-2 in Pakistan during the fourth wave of pandemic.

J Med Virol. 2022-10

[4]
Genome sequence diversity of SARS-CoV-2 obtained from clinical samples in Uzbekistan.

PLoS One. 2022

[5]
The dynamics of circulating SARS-CoV-2 lineages in Bogor and surrounding areas reflect variant shifting during the first and second waves of COVID-19 in Indonesia.

PeerJ. 2022

[6]
Genome sequence diversity of SARS-CoV-2 in Serbia: insights gained from a 3-year pandemic study.

Front Microbiol. 2024-2-27

[7]
Insight into SARS-CoV-2 Omicron variants in Saudi Arabian genomic isolates.

Saudi Med J. 2022-11

[8]
Whole-Genome Sequencing and Mutation Analyses of SARS-CoV-2 Isolates from Indonesia.

Pathogens. 2024-3-25

[9]
Geographical distribution of SARS-CoV-2 amino acids mutations and the concomitant evolution of seven distinct clades in non-human hosts.

Zoonoses Public Health. 2022-11

[10]
Analysis of SARS-CoV-2 Genomes from West Java, Indonesia.

Viruses. 2021-10-18

引用本文的文献

[1]
Comparative Atlas of SARS-CoV-2 Substitution Mutations: A Focus on Iranian Strains Amidst Global Trends.

Viruses. 2024-8-20

[2]
Unravelling the link between SARS-CoV-2 mutation frequencies, patient comorbidities, and structural dynamics.

PLoS One. 2024

[3]
Comparison of Circulating Variants during the Beginning, Middle and the End of the 4th Wave of COVID-19 in Tehran Province, Iran in 2021.

Iran J Public Health. 2023-12

[4]
Genetic characteristics of SARS-CoV-2 virus variants observed upon three waves of the COVID-19 pandemic in Ukraine between February 2021-January 2022.

Heliyon. 2024-2-7

[5]
Sequence analysis of the Spike, RNA-dependent RNA polymerase, and protease genes reveals a distinct evolutionary pattern of SARS-CoV-2 variants circulating in Yogyakarta and Central Java provinces, Indonesia.

Virus Genes. 2024-4

[6]
SARS-CoV-2 BA.2.86 enters lung cells and evades neutralizing antibodies with high efficiency.

Cell. 2024-2-1

[7]
The identification and phylogenetic analysis of SARS-CoV-2 delta variants in Taiwan.

Kaohsiung J Med Sci. 2023-6

[8]
Comprehensive analysis of clinical indications and viral strain variants among patients infected with SARS-CoV-2 in Inner Mongolia, China.

Virus Genes. 2023-6

[9]
Sequence analysis of SARS-CoV-2 Delta variant isolated from Makassar, South Sulawesi, Indonesia.

Heliyon. 2023-2

[10]
Burnout in health care workers during the fourth wave of COVID-19: A cross sectional study from Pakistan.

Ann Med Surg (Lond). 2022-8

本文引用的文献

[1]
Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant.

Cell Rep. 2022-5-17

[2]
Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies.

Nat Commun. 2022-2-15

[3]
Structural and functional insights into the major mutations of SARS-CoV-2 Spike RBD and its interaction with human ACE2 receptor.

J King Saud Univ Sci. 2022-2

[4]
Covid-19 Vaccine Effectiveness in New York State.

N Engl J Med. 2022-1-13

[5]
Genomic surveillance reveals the detection of SARS-CoV-2 delta, beta, and gamma VOCs during the third wave in Pakistan.

J Med Virol. 2022-3

[6]
Analysis of SARS-CoV-2 Genomes from West Java, Indonesia.

Viruses. 2021-10-18

[7]
Biological Significance of the Genomic Variation and Structural Dynamics of SARS-CoV-2 B.1.617.

Front Microbiol. 2021-10-7

[8]
Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study.

Lancet. 2021-10-16

[9]
Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar.

N Engl J Med. 2021-12-9

[10]
SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion.

Nature. 2021-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索