Suppr超能文献

基于传感器的机械回收过程中材料流特性的光学传感器和机器学习算法:系统文献综述。

Optical sensors and machine learning algorithms in sensor-based material flow characterization for mechanical recycling processes: A systematic literature review.

机构信息

Department of Anthropogenic Material Cycles, RWTH Aachen University, Germany.

Department of Anthropogenic Material Cycles, RWTH Aachen University, Germany.

出版信息

Waste Manag. 2022 Jul 15;149:259-290. doi: 10.1016/j.wasman.2022.05.015. Epub 2022 Jun 24.

Abstract

Digital technologies hold enormous potential for improving the performance of future-generation sorting and processing plants; however, this potential remains largely untapped. Improved sensor-based material flow characterization (SBMC) methods could enable new sensor applications such as adaptive plant control, improved sensor-based sorting (SBS), and more far-reaching data utilizations along the value chain. This review aims to expedite research on SBMC by (i) providing a comprehensive overview of existing SBMC publications, (ii) summarizing existing SBMC methods, and (iii) identifying future research potentials in SBMC. By conducting a systematic literature search covering the period 2000 - 2021, we identified 198 peer-reviewed journal articles on SBMC applications based on optical sensors and machine learning algorithms for dry-mechanical recycling of non-hazardous waste. The review shows that SBMC has received increasing attention in recent years, with more than half of the reviewed publications published between 2019 and 2021. While applications were initially focused solely on SBS, the last decade has seen a trend toward new applications, including sensor-based material flow monitoring, quality control, and process monitoring/control. However, SBMC at the material flow and process level remains largely unexplored, and significant potential exists in upscaling investigations from laboratory to plant scale. Future research will benefit from a broader application of deep learning methods, increased use of low-cost sensors and new sensor technologies, and the use of data streams from existing SBS equipment. These advancements could significantly improve the performance of future-generation sorting and processing plants, keep more materials in closed loops, and help paving the way towards circular economy.

摘要

数字技术在提高下一代分拣和加工工厂的性能方面具有巨大的潜力;然而,这种潜力在很大程度上尚未得到开发。基于传感器的物料流特性改进(SBMC)方法可以实现新的传感器应用,如工厂自适应控制、改进的基于传感器的分拣(SBS)以及更广泛的价值链数据利用。本综述旨在通过以下三个方面加速 SBMC 的研究:(i)全面概述现有的 SBMC 文献;(ii)总结现有的 SBMC 方法;(iii)确定 SBMC 的未来研究潜力。通过对 2000 年至 2021 年期间的文献进行系统的搜索,我们确定了 198 篇关于基于光学传感器和机器学习算法的 SBMC 应用的同行评议期刊文章,这些文章用于对非危险废物进行干式机械回收。综述表明,近年来 SBMC 受到了越来越多的关注,其中超过一半的已审查出版物是在 2019 年至 2021 年期间发表的。虽然最初的应用仅专注于 SBS,但过去十年出现了新应用的趋势,包括基于传感器的物料流监测、质量控制和过程监测/控制。然而,物料流和过程级别的 SBMC 仍然在很大程度上未被探索,从实验室到工厂规模的扩大调查仍具有很大的潜力。未来的研究将受益于深度学习方法的更广泛应用、低成本传感器和新传感器技术的更多使用,以及现有 SBS 设备数据的使用。这些进展可以显著提高下一代分拣和加工工厂的性能,使更多的材料保持在闭环中,并为循环经济铺平道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验