Suppr超能文献

使用二维变分模态分解和局部线性嵌入对新型冠状病毒肺炎进行自动筛查。

Automated screening of COVID-19 using two-dimensional variational mode decomposition and locally linear embedding.

作者信息

Ma Liyuan, Xu Xipeng, Cui Changcai, Lu Jingyi, Hua Qifeng, Sun Hao

机构信息

National and Local Joint Engineering Research Center for Intelligent Manufacturing Technology of Brittle Material Products, Huaqiao University, Xiamen 361021, China.

Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China.

出版信息

Biomed Signal Process Control. 2022 Sep;78:103889. doi: 10.1016/j.bspc.2022.103889. Epub 2022 Jun 22.

Abstract

In order to aid imaging physicians to effectively screen chest radiography medical images for presence of Coronavirus Disease 2019 (COVID-19), a novel computer aided diagnosis technology for automatic processing of COVID-19 images is proposed based on two-dimensional variational mode decomposition (2D-VMD) and locally linear embedding (LLE). 2D-VMD algorithm is used to decompose normal and COVID-19 images, and then feature extraction of intrinsic mode functions (IMFs) using Gabor filter. To better extract low-dimensional parameters which are useful for COVID-19 diagnosis, the performance of two dimensionality reduction techniques of principal component analysis (PCA) and LLE are compared, and the LLE is shown to offer satisfactory effect of dimension reduction. Thereafter, the particle swarm optimization-support vector machine (PSO-SVM) algorithm is used to classify. The simulation results show that the proposed technology has achieved accuracy of 99.33%, precision of 100%, recall of 98.63% and F-Measure of 99.31%. Hence, the developed diagnosis technology can be used as an important auxiliary tool to assist diagnosis of imaging physicians.

摘要

为了帮助影像科医生有效筛查胸部X光医学图像中是否存在2019冠状病毒病(COVID-19),基于二维变分模态分解(2D-VMD)和局部线性嵌入(LLE),提出了一种用于自动处理COVID-19图像的新型计算机辅助诊断技术。使用2D-VMD算法对正常图像和COVID-19图像进行分解,然后使用Gabor滤波器对本征模态函数(IMF)进行特征提取。为了更好地提取对COVID-19诊断有用的低维参数,比较了主成分分析(PCA)和LLE这两种降维技术的性能,结果表明LLE具有令人满意的降维效果。此后,使用粒子群优化支持向量机(PSO-SVM)算法进行分类。仿真结果表明,所提出的技术实现了99.33%的准确率、100%的精确率、98.63%的召回率和99.31%的F值。因此,所开发的诊断技术可作为辅助影像科医生进行诊断的重要工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d44/9217160/ac5e1b520a4e/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验