Suppr超能文献

具有物理真空边界的相对论欧拉方程:哈达玛局部适定性、粗糙解及延拓准则。

The relativistic Euler equations with a physical vacuum boundary: Hadamard local well-posedness, rough solutions, and continuation criterion.

作者信息

Disconzi Marcelo M, Ifrim Mihaela, Tataru Daniel

机构信息

Vanderbilt University, Nashville, TN USA.

Department of Mathematics, University of Wisconsin, Madison, USA.

出版信息

Arch Ration Mech Anal. 2022;245(1):127-182. doi: 10.1007/s00205-022-01783-3. Epub 2022 May 10.

Abstract

In this paper we provide a complete local well-posedness theory for the free boundary relativistic Euler equations with a physical vacuum boundary on a Minkowski background. Specifically, we establish the following results: (i) local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and continuous dependence on the data; (ii) low regularity solutions: our uniqueness result holds at the level of Lipschitz velocity and density, while our rough solutions, obtained as unique limits of smooth solutions, have regularity only a half derivative above scaling; (iii) stability: our uniqueness in fact follows from a more general result, namely, we show that a certain nonlinear functional that tracks the distance between two solutions (in part by measuring the distance between their respective boundaries) is propagated by the flow; (iv) we establish sharp, essentially scale invariant energy estimates for solutions; (v) a sharp continuation criterion, at the level of scaling, showing that solutions can be continued as long as the velocity is in and a suitable weighted version of the density is at the same regularity level. Our entire approach is in Eulerian coordinates and relies on the functional framework developed in the companion work of the second and third authors on corresponding non relativistic problem. All our results are valid for a general equation of state , .

摘要

在本文中,我们为闵可夫斯基背景下具有物理真空边界的自由边界相对论欧拉方程提供了一个完整的局部适定性理论。具体而言,我们建立了以下结果:(i)哈达玛意义下的局部适定性,即局部存在性、唯一性以及对数据的连续依赖性;(ii)低正则性解:我们的唯一性结果在利普希茨速度和密度水平上成立,而我们作为光滑解的唯一极限得到的粗糙解,其正则性仅比尺度高半阶导数;(iii)稳定性:我们的唯一性实际上源于一个更一般的结果,即我们表明一个跟踪两个解之间距离(部分通过测量它们各自边界之间的距离)的特定非线性泛函由流传播;(iv)我们为解建立了精确的、本质上尺度不变的能量估计;(v)一个在尺度水平上的精确延拓准则,表明只要速度在[具体范围未给出]且密度的一个合适加权版本处于相同正则性水平,解就可以延拓。我们的整个方法是在欧拉坐标下,并依赖于第二和第三作者关于相应非相对论问题的配套工作中发展的泛函框架。我们所有的结果对于一般的状态方程 , 都是有效的。

相似文献

3
boundary regularity for the pressure in weak solutions of the 2 Euler equations.
Philos Trans A Math Phys Eng Sci. 2022 Mar 7;380(2218):20210073. doi: 10.1098/rsta.2021.0073. Epub 2022 Jan 17.
4
Recent advances on the global regularity for irrotational water waves.无旋水波全局正则性的最新进展。
Philos Trans A Math Phys Eng Sci. 2018 Jan 28;376(2111). doi: 10.1098/rsta.2017.0089.

本文引用的文献

1
Effect of Inhomogeneity on Cosmological Models.不均匀性对宇宙学模型的影响。
Proc Natl Acad Sci U S A. 1934 Mar;20(3):169-76. doi: 10.1073/pnas.20.3.169.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验