Suppr超能文献

多网络数据的异常值检测。

Outlier detection for multi-network data.

机构信息

Department of Statistical Science, Duke University, Durham, NC 27708, USA.

Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Bioinformatics. 2022 Aug 10;38(16):4011-4018. doi: 10.1093/bioinformatics/btac431.

Abstract

MOTIVATION

It has become routine in neuroscience studies to measure brain networks for different individuals using neuroimaging. These networks are typically expressed as adjacency matrices, with each cell containing a summary of connectivity between a pair of brain regions. There is an emerging statistical literature describing methods for the analysis of such multi-network data in which nodes are common across networks but the edges vary. However, there has been essentially no consideration of the important problem of outlier detection. In particular, for certain subjects, the neuroimaging data are so poor quality that the network cannot be reliably reconstructed. For such subjects, the resulting adjacency matrix may be mostly zero or exhibit a bizarre pattern not consistent with a functioning brain. These outlying networks may serve as influential points, contaminating subsequent statistical analyses. We propose a simple Outlier DetectIon for Networks (ODIN) method relying on an influence measure under a hierarchical generalized linear model for the adjacency matrices. An efficient computational algorithm is described, and ODIN is illustrated through simulations and an application to data from the UK Biobank.

RESULTS

ODIN was successful in identifying moderate to extreme outliers. Removing such outliers can significantly change inferences in downstream applications.

AVAILABILITY AND IMPLEMENTATION

ODIN has been implemented in both Python and R and these implementations along with other code are publicly available at github.com/pritamdey/ODIN-python and github.com/pritamdey/ODIN-r, respectively.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

在神经科学研究中,使用神经影像学测量不同个体的大脑网络已成为常规。这些网络通常表示为邻接矩阵,每个单元格包含一对大脑区域之间连接的摘要。有一个新兴的统计文献描述了分析这种多网络数据的方法,其中节点在网络之间是共同的,但边缘不同。然而,基本上没有考虑到异常值检测的重要问题。特别是对于某些受试者,神经影像学数据质量很差,以至于无法可靠地重建网络。对于这些受试者,得到的邻接矩阵可能大部分为零,或者表现出与功能大脑不一致的奇异模式。这些异常网络可能作为有影响力的点,污染后续的统计分析。我们提出了一种简单的网络异常值检测(ODIN)方法,该方法依赖于邻接矩阵的层次广义线性模型下的影响度量。描述了一种有效的计算算法,并通过模拟和对英国生物库数据的应用来说明 ODIN。

结果

ODIN 成功地识别了中度到极端的异常值。去除这些异常值可以显著改变下游应用的推断。

可用性和实现

ODIN 已在 Python 和 R 中实现,这些实现以及其他代码分别在 github.com/pritamdey/ODIN-python 和 github.com/pritamdey/ODIN-r 上公开可用。

补充信息

补充数据可在 Bioinformatics 在线获得。

相似文献

1
Outlier detection for multi-network data.多网络数据的异常值检测。
Bioinformatics. 2022 Aug 10;38(16):4011-4018. doi: 10.1093/bioinformatics/btac431.
9
lionessR: single sample network inference in R.lionessR:R 中的单样本网络推断。
BMC Cancer. 2019 Oct 25;19(1):1003. doi: 10.1186/s12885-019-6235-7.

引用本文的文献

1
Conformal novelty detection for multiple metabolic networks.多代谢网络的保形新颖性检测。
BMC Bioinformatics. 2024 Nov 16;25(1):358. doi: 10.1186/s12859-024-05971-8.
2
Hypothesis testing for detecting outlier evaluators.用于检测异常值评估者的假设检验。
Int J Biostat. 2024 Nov 4;20(2):419-431. doi: 10.1515/ijb-2023-0004. eCollection 2024 Nov 1.

本文引用的文献

5
Mapping population-based structural connectomes.基于人群的结构连接组学图谱绘制。
Neuroimage. 2018 May 15;172:130-145. doi: 10.1016/j.neuroimage.2017.12.064. Epub 2018 Feb 3.
7
Bayesian network-response regression.贝叶斯网络-响应回归。
Bioinformatics. 2017 Jun 15;33(12):1859-1866. doi: 10.1093/bioinformatics/btx050.
9
The WU-Minn Human Connectome Project: an overview.《WU-Minn 人类连接组计划:概述》。
Neuroimage. 2013 Oct 15;80:62-79. doi: 10.1016/j.neuroimage.2013.05.041. Epub 2013 May 16.
10
Graph analysis of the human connectome: promise, progress, and pitfalls.人类连接组学的图分析:前景、进展与挑战。
Neuroimage. 2013 Oct 15;80:426-44. doi: 10.1016/j.neuroimage.2013.04.087. Epub 2013 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验