Suppr超能文献

在弱监督下从单视图RGB-D图像中学习检测3D对称性

Learning to Detect 3D Symmetry From Single-View RGB-D Images With Weak Supervision.

作者信息

Shi Yifei, Xu Xin, Xi Junhua, Hu Xiaochang, Hu Dewen, Xu Kai

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):4882-4896. doi: 10.1109/TPAMI.2022.3186876. Epub 2023 Mar 7.

Abstract

3D symmetry detection is a fundamental problem in computer vision and graphics. Most prior works detect symmetry when the object model is fully known, few studies symmetry detection on objects with partial observation, such as single RGB-D images. Recent work addresses the problem of detecting symmetries from incomplete data with a deep neural network by leveraging the dense and accurate symmetry annotations. However, due to the tedious labeling process, full symmetry annotations are not always practically available. In this work, we present a 3D symmetry detection approach to detect symmetry from single-view RGB-D images without using symmetry supervision. The key idea is to train the network in a weakly-supervised learning manner to complete the shape based on the predicted symmetry such that the completed shape be similar to existing plausible shapes. To achieve this, we first propose a discriminative variational autoencoder to learn the shape prior in order to determine whether a 3D shape is plausible or not. Based on the learned shape prior, a symmetry detection network is present to predict symmetries that produce shapes with high shape plausibility when completed based on those symmetries. Moreover, to facilitate end-to-end network training and multiple symmetry detection, we introduce a new symmetry parametrization for the learning-based symmetry estimation of both reflectional and rotational symmetry. The proposed approach, coupled symmetry detection with shape completion, essentially learns the symmetry-aware shape prior, facilitating more accurate and robust symmetry detection. Experiments demonstrate that the proposed method is capable of detecting reflectional and rotational symmetries accurately, and shows good generality in challenging scenarios, such as objects with heavy occlusion and scanning noise. Moreover, it achieves state-of-the-art performance, improving the F1-score over the existing supervised learning method by 2%-11% on the ShapeNet and ScanNet datasets.

摘要

3D对称检测是计算机视觉和图形学中的一个基本问题。大多数先前的工作是在对象模型完全已知时检测对称性,很少有研究针对部分观测对象(如单幅RGB-D图像)进行对称性检测。最近的工作通过利用密集且准确的对称标注,使用深度神经网络解决了从不完整数据中检测对称性的问题。然而,由于标注过程繁琐,完整的对称标注在实际中并不总是可用的。在这项工作中,我们提出了一种3D对称检测方法,用于从单视图RGB-D图像中检测对称性,而无需使用对称监督。关键思想是以弱监督学习的方式训练网络,基于预测的对称性来完成形状,使得完成后的形状类似于现有的合理形状。为了实现这一点,我们首先提出一种判别式变分自编码器来学习形状先验,以确定一个3D形状是否合理。基于学到的形状先验,提出一个对称检测网络来预测对称性,这些对称性在基于它们完成形状时会产生具有高形状合理性的形状。此外,为了促进端到端网络训练和多重对称检测,我们引入了一种新的对称参数化方法,用于基于学习的反射对称和旋转对称估计。所提出的方法将对称检测与形状完成相结合,本质上学习了对称感知形状先验,有助于更准确和稳健的对称检测。实验表明,所提出的方法能够准确地检测反射对称和旋转对称,并且在具有挑战性的场景(如遮挡严重和扫描噪声大的物体)中表现出良好的通用性。此外,它达到了当前的最优性能,在ShapeNet和ScanNet数据集上,相对于现有的监督学习方法,F1分数提高了2%-11%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验