Suppr超能文献

回声状态网络中不断演进的双阈值比恩斯托克-库珀-蒙罗学习规则

Evolving Dual-Threshold Bienenstock-Cooper-Munro Learning Rules in Echo State Networks.

作者信息

Wang Xinjie, Jin Yaochu, Du Wenli, Wang Jun

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Feb;35(2):1572-1583. doi: 10.1109/TNNLS.2022.3184004. Epub 2024 Feb 5.

Abstract

The strengthening and the weakening of synaptic strength in existing Bienenstock-Cooper-Munro (BCM) learning rule are determined by a long-term potentiation (LTP) sliding modification threshold and the afferent synaptic activities. However, synaptic long-term depression (LTD) even affects low-active synapses during the induction of synaptic plasticity, which may lead to information loss. Biological experiments have found another LTD threshold that can induce either potentiation or depression or no change, even at the activated synapses. In addition, existing BCM learning rules can only select a set of fixed rule parameters, which is biologically implausible and practically inflexible to learn the structural information of input signals. In this article, an evolved dual-threshold BCM learning rule is proposed to regulate the reservoir internal connection weights of the echo-state-network (ESN), which can contribute to alleviating information loss and enhancing learning performance by introducing different optimal LTD thresholds for different postsynaptic neurons. Our experimental results show that the evolved dual-threshold BCM learning rule can result in the synergistic learning of different plasticity rules, effectively improving the learning performance of an ESN in comparison with existing neural plasticity learning rules and some state-of-the-art ESN variants on three widely used benchmark tasks and the prediction of an esterification process.

摘要

在现有的比恩斯托克-库珀-蒙罗(BCM)学习规则中,突触强度的增强和减弱由长时程增强(LTP)滑动修改阈值和传入突触活动决定。然而,在突触可塑性诱导过程中,突触长时程抑制(LTD)甚至会影响低活性突触,这可能导致信息丢失。生物学实验发现了另一个LTD阈值,即使在激活的突触处,该阈值也能诱导增强、抑制或无变化。此外,现有的BCM学习规则只能选择一组固定的规则参数,这在生物学上是不合理的,并且在学习输入信号的结构信息时实际灵活性不足。在本文中,提出了一种进化的双阈值BCM学习规则来调节回声状态网络(ESN)的储层内部连接权重,通过为不同的突触后神经元引入不同的最优LTD阈值,这有助于减轻信息丢失并提高学习性能。我们的实验结果表明,与现有的神经可塑性学习规则以及一些在三个广泛使用的基准任务和一个酯化过程预测中表现优异的ESN变体相比,进化的双阈值BCM学习规则能够实现不同可塑性规则的协同学习,有效提高ESN的学习性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验