Suppr超能文献

基于磁共振成像参数的机器学习在高强度聚焦超声消融子宫肌瘤预后预测中的应用。

Magnetic resonance imaging parameter-based machine learning for prognosis prediction of high-intensity focused ultrasound ablation of uterine fibroids.

机构信息

State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China.

出版信息

Int J Hyperthermia. 2022;39(1):835-846. doi: 10.1080/02656736.2022.2090622.

Abstract

To develop and apply magnetic resonance imaging (MRI) parameter-based machine learning (ML) models to predict non-perfused volume (NPV) reduction and residual regrowth of uterine fibroids after high-intensity focused ultrasound (HIFU) ablation. MRI data of 573 uterine fibroids in 410 women who underwent HIFU ablation from the Chongqing Haifu Hospital (training set,  = 405) and the First Affiliated Hospital of Chongqing Medical University (testing set,  = 168) were retrospectively analyzed. Fourteen MRI parameters were screened for important predictors using the Boruta algorithm. Multiple ML models were constructed to predict NPV reduction and residual fibroid regrowth in a median of 203.0 (interquartile range: 122.5-367.5) days. Furthermore, optimal models were used to plot prognostic prediction curves. Fourteen features, including postoperative NPV, indicated predictive ability for NPV reduction. Based on the 10-fold cross-validation, the best average performance of multilayer perceptron achieved with R was 0.907. In the testing set, the best model was linear regression (R =0.851). Ten features, including the maximum thickness of residual fibroids, revealed predictive power for residual fibroid regrowth. Random forest model achieved the best performance with an average area under the curve (AUC) of 0.904 (95% confidence interval (CI), 0.869-0.939), which was maintained in the testing set with an AUC of 0.891 (95% CI, 0.850-0.929). ML models based on MRI parameters can be used for prognostic prediction of uterine fibroids after HIFU ablation. They can potentially serve as a new method for learning more about ablated fibroids.

摘要

目的

开发并应用基于磁共振成像(MRI)参数的机器学习(ML)模型,预测高强度聚焦超声(HIFU)消融后子宫肌瘤的无灌注体积(NPV)减少和残留再生。

方法

回顾性分析了 410 名女性(训练集=405 名,测试集=168 名)在重庆海扶医院(训练集)和重庆医科大学第一附属医院(测试集)接受 HIFU 消融的 573 个子宫肌瘤的 MRI 数据。使用 Boruta 算法筛选出 14 个重要的 MRI 参数作为预测因子。构建了多个 ML 模型来预测中位数为 203.0(四分位距:122.5-367.5)天的 NPV 减少和残留肌瘤再生。此外,还使用最优模型绘制了预后预测曲线。

结果

术后 NPV 等 14 个特征对 NPV 减少具有预测能力。在 10 倍交叉验证中,基于 R 的多层感知器的最佳平均性能为 0.907。在测试集中,最佳模型为线性回归(R=0.851)。残留肌瘤的最大厚度等 10 个特征对残留肌瘤再生具有预测能力。随机森林模型的平均曲线下面积(AUC)为 0.904(95%置信区间(CI):0.869-0.939),在测试集中 AUC 为 0.891(95%CI:0.850-0.929),性能保持稳定。

结论

基于 MRI 参数的 ML 模型可用于预测 HIFU 消融后子宫肌瘤的预后。它们可能成为了解消融肌瘤的新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验