Lim Chaehong, Park Chansul, Sunwoo Sung-Hyuk, Kim Young Geon, Lee Seunghwan, Han Sang Ihn, Kim Dokyoon, Kim Jeong Hyun, Kim Dae-Hyeong, Hyeon Taeghwan
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
ACS Nano. 2022 Jul 26;16(7):10431-10442. doi: 10.1021/acsnano.2c00880. Epub 2022 Jun 29.
Noble metal nanomaterials have been studied as conductive fillers for stretchable, conductive, and biocompatible nanocomposites. However, their performance as conductive filler materials is far from ideal because of their high percolation threshold and low intrinsic conductivity. Moreover, the difficulty in large-scale production is another critical hurdle in their practical applications. Here we report a method for the facile and scalable synthesis of whiskered gold nanosheets (W-AuNSs) for stretchable, conductive, and biocompatible nanocomposites and their application to stretchable bioelectrodes. W-AuNSs show a lower percolation threshold (1.56 vol %) than those of gold nanoparticles (5.02 vol %) and gold nanosheets (2.74 vol %), which enables the fabrication of W-AuNS-based stretchable nanocomposites with superior conductivity and high stretchability. Addition of platinum-coated W-AuNSs (W-AuNSs@Pt) to the prepared nanocomposite significantly reduces the impedance and improved charge storage capacity. Such enhanced performance of the stretchable nanocomposite enables us to fabricate stretchable bioelectrodes whose performance is demonstrated through animal experiments including electrophysiological recording and electrical stimulation .
贵金属纳米材料已被研究用作可拉伸、导电且生物相容的纳米复合材料的导电填料。然而,由于其高渗流阈值和低本征电导率,它们作为导电填充材料的性能远非理想。此外,大规模生产的困难是其实际应用中的另一个关键障碍。在此,我们报告了一种用于可拉伸、导电且生物相容的纳米复合材料的晶须状金纳米片(W-AuNSs)的简便且可扩展合成方法及其在可拉伸生物电极中的应用。W-AuNSs的渗流阈值(1.56体积%)低于金纳米颗粒(5.02体积%)和金纳米片(2.74体积%),这使得能够制备具有优异导电性和高拉伸性的基于W-AuNS的可拉伸纳米复合材料。向制备的纳米复合材料中添加铂包覆的W-AuNSs(W-AuNSs@Pt)可显著降低阻抗并提高电荷存储容量。这种可拉伸纳米复合材料的性能增强使我们能够制造可拉伸生物电极,其性能通过包括电生理记录和电刺激在内的动物实验得到了证明。