Suppr超能文献

射血分数保留型心力衰竭的未来:针对治疗靶点的深度表型分析。

The future of heart failure with preserved ejection fraction : Deep phenotyping for targeted therapeutics.

机构信息

Medizinische Klinik mit Schwerpunkt Kardiologie, Charité - Universitätsmedizin, Campus Virchow-Klinikum, Berlin, Germany.

Partner Site Berlin, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Berlin, Germany.

出版信息

Herz. 2022 Aug;47(4):308-323. doi: 10.1007/s00059-022-05124-8. Epub 2022 Jun 29.

Abstract

Heart failure (HF) with preserved ejection fraction (HFpEF) is a multi-organ, systemic syndrome that involves multiple cardiac and extracardiac pathophysiologic abnormalities. Because HFpEF is a heterogeneous syndrome and resistant to a "one-size-fits-all" approach it has proven to be very difficult to treat. For this reason, several research groups have been working on methods for classifying HFpEF and testing targeted therapeutics for the HFpEF subtypes identified. Apart from conventional classification strategies based on comorbidity, etiology, left ventricular remodeling, and hemodynamic subtypes, researchers have been combining deep phenotyping with innovative analytical strategies (e.g., machine learning) to classify HFpEF into therapeutically homogeneous subtypes over the past few years. Despite the growing excitement for such approaches, there are several potential pitfalls to their use, and there is a pressing need to follow up on data-driven HFpEF subtypes in order to determine their underlying mechanisms and molecular basis. Here we provide a framework for understanding the phenotype-based approach to HFpEF by reviewing (1) the historical context of HFpEF; (2) the current HFpEF paradigm of comorbidity-induced inflammation and endothelial dysfunction; (3) various methods of sub-phenotyping HFpEF; (4) comorbidity-based classification and treatment of HFpEF; (5) machine learning approaches to classifying HFpEF; (6) examples from HFpEF clinical trials; and (7) the future of phenomapping (machine learning and other advanced analytics) for the classification of HFpEF.

摘要

心力衰竭(HF)伴射血分数保留(HFpEF)是一种多器官、系统性综合征,涉及多种心脏和心脏外病理生理异常。由于 HFpEF 是一种异质性综合征,对“一刀切”的方法不敏感,因此很难治疗。出于这个原因,几个研究小组一直在研究 HFpEF 的分类方法,并测试针对确定的 HFpEF 亚型的靶向治疗方法。除了基于合并症、病因、左心室重构和血液动力学亚型的传统分类策略外,研究人员在过去几年中一直在将深度表型与创新的分析策略(例如机器学习)相结合,将 HFpEF 分类为治疗上同质的亚型。尽管人们对这些方法越来越感兴趣,但它们的使用存在一些潜在的陷阱,迫切需要根据数据驱动的 HFpEF 亚型进行随访,以确定其潜在机制和分子基础。在这里,我们通过回顾(1)HFpEF 的历史背景;(2)当前 HFpEF 合并症诱导的炎症和内皮功能障碍的范例;(3)HFpEF 亚表型的各种方法;(4)基于合并症的 HFpEF 分类和治疗;(5)用于分类 HFpEF 的机器学习方法;(6)HFpEF 临床试验的例子;以及(7)对 HFpEF 进行分类的表型映射(机器学习和其他高级分析)的未来,为理解基于表型的 HFpEF 方法提供了一个框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17f4/9355937/312874c91035/59_2022_5124_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验