射血分数保留的心力衰竭表型:寻找有效治疗方法的关键。

Phenotyping in heart failure with preserved ejection fraction: A key to find effective treatment.

机构信息

1st Chair and Department of Cardiology, Medical University of Warsaw, Poland.

出版信息

Adv Clin Exp Med. 2022 Oct;31(10):1163-1172. doi: 10.17219/acem/149728.

Abstract

Heart failure with preserved ejection fraction (HFpEF) is an increasingly widespread medical condition, with excessive morbidity and mortality. Recently, for the first time in HFpEF, a reduction in the primary composite outcome of cardiovascular death or HF hospitalization was shown with empagliflozin. The failure of previous clinical trials in HFpEF might have resulted from suboptimal patient selection and inclusion of patients without "true" or clinically significant HFpEF. Another important factor might be the heterogeneity of HFpEF, and thus there is a growing interest in HFpEF phenotyping. This phenotyping can be based on clinical presentation (e.g., subtypes with predominant atrial fibrillation, obesity, pulmonary hypertension and right ventricular failure, coronary artery disease (CAD), or noncardiac comorbidities), but also on HFpEF etiology. Specific therapies, such as tafamidis in transthyretin-related amyloidosis (ATTR) or mavacamten in hypertrophic cardiomyopathy, have demonstrated their efficacy. However, pathomechanisms leading to the development of different phenotypes of HFpEF seem more complex and subtle. Machine learning and neural network models might help identify specific subgroups within the HFpEF population that either cluster patients with similar genetic, biochemical, echocardiographic or clinical characteristics, or respond similarly to a given treatment. Herein, we review different approaches to HFpEF phenotyping and present some distinct HFpEF subtypes.

摘要

射血分数保留的心力衰竭(HFpEF)是一种日益广泛的医学病症,具有极高的发病率和死亡率。最近,恩格列净首次在 HFpEF 中显示出降低心血管死亡或 HF 住院的主要复合结局的效果。HFpEF 之前的临床试验失败可能是由于患者选择不当和纳入了没有“真正”或临床上显著的 HFpEF 的患者。另一个重要因素可能是 HFpEF 的异质性,因此对 HFpEF 表型的研究兴趣日益浓厚。这种表型可以基于临床表现(例如,以心房颤动、肥胖、肺动脉高压和右心衰竭、冠状动脉疾病(CAD)或非心脏合并症为主的亚型),也可以基于 HFpEF 的病因。特定的治疗方法,如转甲状腺素相关淀粉样变性(ATTR)中的 tafamidis 或肥厚型心肌病中的 mavacamten,已经证明了它们的疗效。然而,导致不同 HFpEF 表型发展的病理机制似乎更加复杂和微妙。机器学习和神经网络模型可能有助于在 HFpEF 人群中识别具有相似遗传、生化、超声心动图或临床特征的特定亚组,或者对特定治疗有相似反应的亚组。在此,我们回顾了 HFpEF 表型的不同方法,并介绍了一些不同的 HFpEF 亚型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索