Suppr超能文献

自适应数据驱动模型,以最佳预测随着 IVF 周期的进行和每次胚胎移植的活产可能性。

Adaptive data-driven models to best predict the likelihood of live birth as the IVF cycle moves on and for each embryo transfer.

机构信息

Department of Assisted Reproductive Technology and Fertility Preservation, Clinique Mathilde, Service Assistance Médicale à la Procréation, 76100, Rouen, France.

Nantes Université, Inserm, Centre de Recherche en Transplantation Et Immunologie, UMR 1064, ITUN, 44000, Nantes, France.

出版信息

J Assist Reprod Genet. 2022 Aug;39(8):1937-1949. doi: 10.1007/s10815-022-02547-4. Epub 2022 Jun 29.

Abstract

PURPOSE

To dynamically assess the evolution of live birth predictive factors' impact throughout the in vitro fertilization (IVF) process, for each fresh and subsequent frozen embryo transfers.

METHODS

In this multicentric study, data from 13,574 fresh IVF cycles and 6,770 subsequent frozen embryo transfers were retrospectively analyzed. Fifty-seven descriptive parameters were included and split into four categories: (1) demographic (couple's baseline characteristics), (2) ovarian stimulation, (3) laboratory data, and (4) embryo transfer (fresh and frozen). All these parameters were used to develop four successive predictive models with the outcome being a live birth event.

RESULTS

Eight parameters were predictive of live birth in the first step after the first consultation, 9 in the second step after the stimulation, 11 in the third step with laboratory data, and 13 in the 4th step at the transfer stage. The predictive performance of the models increased at each step. Certain parameters remained predictive in all 4 models while others were predictive only in the first models and no longer in the subsequent ones when including new parameters. Moreover, some parameters were predictive in fresh transfers but not in frozen transfers.

CONCLUSION

This work evaluates the chances of live birth for each embryo transfer individually and not the cumulative outcome after multiple IVF attempts. The different predictive models allow to determine which parameters should be taken into account or not at each step of an IVF cycle, and especially at the time of each embryo transfer, fresh or frozen.

摘要

目的

动态评估活产预测因素在体外受精(IVF)过程中的影响演变,针对每个新鲜胚胎移植和随后的冷冻胚胎移植。

方法

在这项多中心研究中,回顾性分析了 13574 个新鲜 IVF 周期和 6770 个随后的冷冻胚胎移植的数据。共纳入 57 个描述性参数,并分为四类:(1)人口统计学(夫妇的基线特征),(2)卵巢刺激,(3)实验室数据,(4)胚胎移植(新鲜和冷冻)。所有这些参数均用于建立四个连续的预测模型,其结果为活产事件。

结果

在第一次咨询后的第一步中有 8 个参数预测活产,在刺激后的第二步中有 9 个,在实验室数据的第三步中有 11 个,在转移阶段的第四步中有 13 个。模型的预测性能在每个步骤都有所提高。某些参数在所有 4 个模型中都具有预测性,而其他参数仅在前 2 个模型中具有预测性,在包含新参数时,在后 2 个模型中不再具有预测性。此外,有些参数在新鲜转移中具有预测性,但在冷冻转移中没有。

结论

这项工作评估了每个胚胎移植的活产机会,而不是多次 IVF 尝试后的累积结果。不同的预测模型可以确定在 IVF 周期的每个步骤,特别是在每次胚胎移植时(新鲜或冷冻),应该考虑哪些参数或不考虑哪些参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d8/9428070/3043e2336e7f/10815_2022_2547_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验