R&D Department, Univfy, Los Altos, California.
Jencap Consulting Ltd., Cardiff, United Kingdom.
Semin Reprod Med. 2024 Jun;42(2):112-129. doi: 10.1055/s-0044-1791536. Epub 2024 Oct 8.
Although in vitro fertilization (IVF) has become an extremely effective treatment option for infertility, there is significant underutilization of IVF by patients who could benefit from such treatment. In order for patients to choose to consider IVF treatment when appropriate, it is critical for them to be provided with an accurate, understandable IVF prognosis. Machine learning (ML) can meet the challenge of personalized prognostication based on data available prior to treatment. The development, validation, and deployment of ML prognostic models and related patient counseling report delivery require specialized human and platform expertise. This review article takes a pragmatic approach to review relevant reports of IVF prognostic models and draws from extensive experience meeting patients' and providers' needs with the development of data and model pipelines to implement validated ML models at scale, at the point-of-care. Requirements of using ML-based IVF prognostics at point-of-care will be considered alongside clinical ML implementation factors critical for success. Finally, we discuss health, social, and economic objectives that may be achieved by leveraging combined human expertise and ML prognostics to expand fertility care access and advance health and social good.
尽管体外受精(IVF)已成为治疗不孕不育的一种极其有效的治疗选择,但仍有大量符合 IVF 治疗条件的患者未充分利用该技术。为了使患者在适当的时候选择考虑 IVF 治疗,为他们提供准确、易懂的 IVF 预后至关重要。机器学习(ML)可以满足基于治疗前可用数据进行个性化预后预测的挑战。ML 预后模型的开发、验证和部署,以及相关的患者咨询报告的交付,都需要专门的人力和平台专业知识。本文采用务实的方法,回顾了 IVF 预后模型的相关报告,并借鉴了在开发数据和模型管道以在护理点大规模实施经过验证的 ML 模型方面的丰富经验,以满足患者和提供者的需求。本文将一并考虑在护理点使用基于 ML 的 IVF 预后的要求,以及对成功至关重要的临床 ML 实施因素。最后,我们讨论了通过利用人类专业知识和 ML 预后来扩大生育护理的可及性,以及促进健康和社会福利,可能实现的健康、社会和经济目标。