Koch Sophie Marie, Pillon Manuel, Keplinger Tobias, Dreimol Christopher Hubert, Weinkötz Stephan, Burgert Ingo
Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland.
WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Dübendorf, Switzerland.
ACS Appl Mater Interfaces. 2022 Jul 13;14(27):31216-31224. doi: 10.1021/acsami.2c04014. Epub 2022 Jun 29.
Delignified wood (DW) represents a promising bio-based fibrous material as a reinforcing component in high-performance composites. These cellulose composites possess excellent strength and stiffness in the dry state, which are significantly higher than for natural wood. However, in the wet state, a penetrating water layer enters the intercellular regions and disrupts the stress transfer mechanisms between cell fibers in fully DW. This water layer initially facilitates complex shaping of the material but imparts DW composites with very low wet stiffness and strength. Therefore, a sufficient stress transfer in the wet state necessitates a resin impregnation of these intercellular regions, establishing bonding mechanisms between adjacent fibers. Here, we utilize a water-based dimethyloldihydroxyethylene urea thermosetting matrix (DMDHEU) and compare it with a non-water-based epoxy matrix. We infiltrate these resins into DW and investigate their spatial distribution by scanning electron microscopy, atomic force microscopy, and confocal Raman spectroscopy. The water-based resin impregnates the intercellular areas and generates an artificial compound middle lamella, while the epoxy infiltrates only the cell lumina of the dry DW. Tensile tests in the dry and wet states show that the DMDHEU matrix infiltration of the intercellular areas and the cell wall results in a higher tensile strength and stiffness compared to the epoxy resin. Here, the artificial compound middle lamella made of DMDHEU bonds adjacent fibers together and substantially increases the composites' wet strength. This study elucidates the importance of the interaction and spatial distribution of the resin system within the DW structure to improve mechanical properties, particularly in the wet state.
脱木素木材(DW)作为高性能复合材料中的增强组分,是一种很有前景的生物基纤维材料。这些纤维素复合材料在干燥状态下具有优异的强度和刚度,显著高于天然木材。然而,在潮湿状态下,一层渗透水进入细胞间区域,破坏了完全脱木素木材中细胞纤维之间的应力传递机制。这层水最初有助于材料的复杂成型,但赋予脱木素木材复合材料非常低的湿态刚度和强度。因此,在潮湿状态下实现足够的应力传递需要对这些细胞间区域进行树脂浸渍,以建立相邻纤维之间的粘结机制。在此,我们使用一种水基二羟甲基二羟基乙烯脲热固性基体(DMDHEU),并将其与非水基环氧基体进行比较。我们将这些树脂渗透到脱木素木材中,并通过扫描电子显微镜、原子力显微镜和共聚焦拉曼光谱研究它们的空间分布。水基树脂浸渍细胞间区域并形成人工复合中层,而环氧树脂仅渗透干燥脱木素木材的细胞腔。干湿状态下的拉伸试验表明,与环氧树脂相比,DMDHEU基体对细胞间区域和细胞壁的渗透导致更高的拉伸强度和刚度。在此,由DMDHEU制成的人工复合中层将相邻纤维粘结在一起,并显著提高了复合材料的湿态强度。本研究阐明了树脂体系在脱木素木材结构中的相互作用和空间分布对改善机械性能的重要性,特别是在潮湿状态下。