Koch Sophie Marie, Dreimol Christopher Hubert, Goldhahn Christian, Maillard Aline, Stadler Andrina, Künniger Tina, Grönquist Philippe, Ritter Maximilian, Keplinger Tobias, Burgert Ingo
Wood Materials Science, Institute for Building Materials, ETH Zurich, 8093 Zurich, Switzerland.
WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Duebendorf, Switzerland.
ACS Sustain Chem Eng. 2024 May 30;12(23):8662-8670. doi: 10.1021/acssuschemeng.4c00306. eCollection 2024 Jun 10.
Compliant materials are indispensable for many emerging soft robotics applications. Hence, concerns regarding sustainability and end-of-life options for these materials are growing, given that they are predominantly petroleum-based and non-recyclable. Despite efforts to explore alternative bio-derived soft materials like gelatin, they frequently fall short in delivering the mechanical performance required for soft actuating systems. To address this issue, we reinforced a compliant and transparent gelatin-glycerol matrix with structure-retained delignified wood, resulting in a flexible and entirely biobased composite (DW-flex). This DW-flex composite exhibits highly anisotropic mechanical behavior, possessing higher strength and stiffness in the fiber direction and high deformability perpendicular to it. Implementing a distinct anisotropy in otherwise isotropic soft materials unlocks new possibilities for more complex movement patterns. To demonstrate the capability and potential of DW-flex, we built and modeled a fin ray-inspired gripper finger, which deforms based on a twist-bending-coupled motion that is tailorable by adjusting the fiber direction. Moreover, we designed a demonstrator for a proof-of-concept suitable for gripping a soft object with a complex shape, i.e., a strawberry. We show that this composite is entirely biodegradable in soil, enabling more sustainable approaches for soft actuators in robotics applications.
柔顺材料对于许多新兴的软体机器人应用来说不可或缺。因此,鉴于这些材料主要基于石油且不可回收,人们对其可持续性和报废处理选项的担忧与日俱增。尽管已努力探索诸如明胶等替代性生物基软材料,但它们在提供软体驱动系统所需的机械性能方面常常不足。为解决这一问题,我们用结构保留的脱木质素木材增强了柔顺且透明的明胶 - 甘油基体,从而得到一种柔性且完全生物基的复合材料(DW-flex)。这种DW-flex复合材料表现出高度各向异性的力学行为,在纤维方向具有更高的强度和刚度,而在垂直于纤维的方向具有高变形能力。在原本各向同性的软材料中实现独特的各向异性为更复杂的运动模式开启了新的可能性。为展示DW-flex的能力和潜力,我们构建并模拟了一种受鳍条启发的抓取手指,它基于一种可通过调整纤维方向来定制的扭弯耦合运动而变形。此外,我们设计了一个概念验证演示器,适用于抓取形状复杂的软物体,即草莓。我们表明这种复合材料在土壤中完全可生物降解,为机器人应用中的软致动器实现更可持续的方法提供了可能。