Suppr超能文献

通过数据驱动方法加速高自由体积分数聚合物的发现

Accelerating Discovery of High Fractional Free Volume Polymers from a Data-Driven Approach.

作者信息

Wang Mao, Jiang Jianwen

机构信息

Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore, Singapore.

出版信息

ACS Appl Mater Interfaces. 2022 Jul 13;14(27):31203-31215. doi: 10.1021/acsami.2c03917. Epub 2022 Jun 29.

Abstract

As a fundamental structure characteristic in polymers, fractional free volume (FFV) plays an indispensable role in governing polymer properties and performance. However, the design of new high-FFV polymers is challenging. In this study, we report a data-driven approach and aim to accelerate the discovery of high-FFV polymers. First, a computational method is proposed to calculate FFV, and a two-step fragmentation method is developed to construct a fragment library for digital representation of polymer structures. Data mining is employed to identify promising fragments for high FFV. Subsequently, machine learning (ML) models are trained using a data set with 1683 polymers and their excellent transferability is demonstrated by out-of-sample predictions in another data set with 11,479 polymers. Finally, the ML models are used to screen ∼1 million hypothetical polymers, and 29,482 polymers with FFV > 0.2 are shortlisted; representative high-FFV polymers are validated by molecular simulations, and design strategies are highlighted. To further facilitate the discovery of new high-FFV polymers, we develop an online interactive platform https://ffv-prediction.herokuapp.com, which allows for rapid FFV predictions, given polymer structures. The data-driven approach in this study might advance the development of new high-FFV polymers and further explore quantitative structure-property relationships for polymers.

摘要

作为聚合物的一种基本结构特征,分数自由体积(FFV)在决定聚合物的性质和性能方面发挥着不可或缺的作用。然而,新型高FFV聚合物的设计具有挑战性。在本研究中,我们报告了一种数据驱动的方法,旨在加速高FFV聚合物的发现。首先,提出了一种计算FFV的方法,并开发了一种两步碎片化方法来构建用于聚合物结构数字表示的片段库。采用数据挖掘来识别具有高FFV潜力的片段。随后,使用包含1683种聚合物的数据集训练机器学习(ML)模型,并通过在另一个包含11479种聚合物的数据集上进行样本外预测来证明其出色的可转移性。最后,利用ML模型筛选了约100万种假设聚合物,筛选出29482种FFV>0.2的聚合物;通过分子模拟验证了代表性的高FFV聚合物,并突出了设计策略。为了进一步促进新型高FFV聚合物的发现,我们开发了一个在线交互式平台https://ffv-prediction.herokuapp.com,该平台可根据聚合物结构快速预测FFV。本研究中的数据驱动方法可能会推动新型高FFV聚合物的开发,并进一步探索聚合物的定量结构-性质关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验