Suppr超能文献

基于卷积神经网络和能量积分 CT 训练标签的光子计数 CT 物质分解。

Material decomposition from photon-counting CT using a convolutional neural network and energy-integrating CT training labels.

机构信息

Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University, Durham, NC 27710, United States of America.

出版信息

Phys Med Biol. 2022 Jul 18;67(15). doi: 10.1088/1361-6560/ac7d34.

Abstract

Photon-counting CT (PCCT) has better dose efficiency and spectral resolution than energy-integrating CT, which is advantageous for material decomposition. Unfortunately, the accuracy of PCCT-based material decomposition is limited due to spectral distortions in the photon-counting detector (PCD).In this work, we demonstrate a deep learning (DL) approach that compensates for spectral distortions in the PCD and improves accuracy in material decomposition by using decomposition maps provided by high-dose multi-energy-integrating detector (EID) data as training labels. We use a 3D U-net architecture and compare networks with PCD filtered back projection (FBP) reconstruction (FBP2Decomp), PCD iterative reconstruction (Iter2Decomp), and PCD decomposition (Decomp2Decomp) as the input.We found that our Iter2Decomp approach performs best, but DL outperforms matrix inversion decomposition regardless of the input. Compared to PCD matrix inversion decomposition, Iter2Decomp gives 27.50% lower root mean squared error (RMSE) in the iodine (I) map and 59.87% lower RMSE in the photoelectric effect (PE) map. In addition, it increases the structural similarity (SSIM) by 1.92%, 6.05%, and 9.33% in the I, Compton scattering (CS), and PE maps, respectively. When taking measurements from iodine and calcium vials, Iter2Decomp provides excellent agreement with multi-EID decomposition. One limitation is some blurring caused by our DL approach, with a decrease from 1.98 line pairs/mm at 50% modulation transfer function (MTF) with PCD matrix inversion decomposition to 1.75 line pairs/mm at 50% MTF when using Iter2Decomp.Overall, this work demonstrates that our DL approach with high-dose multi-EID derived decomposition labels is effective at generating more accurate material maps from PCD data. More accurate preclinical spectral PCCT imaging such as this could serve for developing nanoparticles that show promise in the field of theranostics (therapy and diagnostics).

摘要

光子计数 CT(PCCT)比能量积分 CT 具有更好的剂量效率和光谱分辨率,这有利于物质分解。不幸的是,由于光子计数探测器(PCD)中的光谱失真,基于 PCCT 的物质分解的准确性受到限制。在这项工作中,我们展示了一种深度学习(DL)方法,该方法通过使用高剂量多能量积分探测器(EID)数据的分解图作为训练标签,补偿 PCD 中的光谱失真,并提高物质分解的准确性。我们使用 3D U-net 架构,并比较了使用 PCD 滤波反投影(FBP)重建(FBP2Decomp)、PCD 迭代重建(Iter2Decomp)和 PCD 分解(Decomp2Decomp)作为输入的网络。我们发现我们的 Iter2Decomp 方法表现最好,但无论输入如何,DL 都优于矩阵反演分解。与 PCD 矩阵反演分解相比,Iter2Decomp 在碘(I)图中的均方根误差(RMSE)降低 27.50%,光电效应(PE)图中的 RMSE 降低 59.87%。此外,它分别使碘、康普顿散射(CS)和光电效应图的结构相似性(SSIM)提高了 1.92%、6.05%和 9.33%。当从碘和钙小瓶进行测量时,Iter2Decomp 与多 EID 分解具有极好的一致性。一个限制是我们的 DL 方法造成的一些模糊,从 PCD 矩阵反演分解的 50%调制传递函数(MTF)的 1.98 线对/mm 下降到使用 Iter2Decomp 的 50% MTF 的 1.75 线对/mm。总的来说,这项工作表明,我们的方法使用高剂量多 EID 衍生的分解标签,从 PCD 数据生成更准确的物质图是有效的。这种更准确的临床前光谱 PCCT 成像可以用于开发在治疗学(治疗和诊断)领域有前景的纳米颗粒。

相似文献

2
High-pitch, high temporal resolution, multi-energy cardiac imaging on a dual-source photon-counting-detector CT.
Med Phys. 2023 Mar;50(3):1428-1435. doi: 10.1002/mp.16124. Epub 2022 Dec 17.
3
Energy-integrating-detector multi-energy CT: Implementation and a phantom study.
Med Phys. 2021 Sep;48(9):4857-4871. doi: 10.1002/mp.14943. Epub 2021 Jul 29.
5
Performance evaluation of single- and dual-contrast spectral imaging on a photon-counting-detector CT.
Med Phys. 2024 Nov;51(11):8034-8046. doi: 10.1002/mp.17367. Epub 2024 Sep 5.
7
Multi-energy CT imaging for large patients using dual-source photon-counting detector CT.
Phys Med Biol. 2020 Aug 31;65(17):17NT01. doi: 10.1088/1361-6560/ab99e4.
8
A neural network-based method for spectral distortion correction in photon counting x-ray CT.
Phys Med Biol. 2016 Aug 21;61(16):6132-53. doi: 10.1088/0031-9155/61/16/6132. Epub 2016 Jul 29.
10
A Deep Learning Approach for Rapid and Generalizable Denoising of Photon-Counting Micro-CT Images.
Tomography. 2023 Jul 2;9(4):1286-1302. doi: 10.3390/tomography9040102.

引用本文的文献

1
Photon-counting CT in cancer radiotherapy: technological advances and clinical benefits.
Phys Med Biol. 2025 May 16;70(10):10TR01. doi: 10.1088/1361-6560/add4ba.
2
Deep learning-based material decomposition of iodine and calcium in mobile photon counting detector CT.
PLoS One. 2024 Jul 26;19(7):e0306627. doi: 10.1371/journal.pone.0306627. eCollection 2024.
3
High-resolution hybrid micro-CT imaging pipeline for mouse brain region segmentation and volumetric morphometry.
PLoS One. 2024 May 23;19(5):e0303288. doi: 10.1371/journal.pone.0303288. eCollection 2024.
4
Systematic Review on Learning-based Spectral CT.
IEEE Trans Radiat Plasma Med Sci. 2024 Feb;8(2):113-137. doi: 10.1109/trpms.2023.3314131. Epub 2023 Sep 12.
5
Towards full-stack deep learning-empowered data processing pipeline for synchrotron tomography experiments.
Innovation (Camb). 2023 Nov 16;5(1):100539. doi: 10.1016/j.xinn.2023.100539. eCollection 2024 Jan 8.
6
A Deep Learning Approach for Rapid and Generalizable Denoising of Photon-Counting Micro-CT Images.
Tomography. 2023 Jul 2;9(4):1286-1302. doi: 10.3390/tomography9040102.
7
Systematic Review on Learning-based Spectral CT.
ArXiv. 2024 Sep 25:arXiv:2304.07588v9.
8
Micro-CT imaging of multiple K-edge elements using GaAs and CdTe photon counting detectors.
Phys Med Biol. 2023 Apr 12;68(8). doi: 10.1088/1361-6560/acc77e.

本文引用的文献

2
Deep-learning-based direct inversion for material decomposition.
Med Phys. 2020 Dec;47(12):6294-6309. doi: 10.1002/mp.14523. Epub 2020 Oct 30.
3
Dual source hybrid spectral micro-CT using an energy-integrating and a photon-counting detector.
Phys Med Biol. 2020 Oct 21;65(20):205012. doi: 10.1088/1361-6560/aba8b2.
4
Photon-counting CT: Technical Principles and Clinical Prospects.
Radiology. 2018 Nov;289(2):293-312. doi: 10.1148/radiol.2018172656. Epub 2018 Sep 4.
5
Dual-Energy CT Imaging of Tumor Liposome Delivery After Gold Nanoparticle-Augmented Radiation Therapy.
Theranostics. 2018 Feb 12;8(7):1782-1797. doi: 10.7150/thno.22621. eCollection 2018.
6
Hybrid spectral CT reconstruction.
PLoS One. 2017 Jul 6;12(7):e0180324. doi: 10.1371/journal.pone.0180324. eCollection 2017.
7
A Fourier approach to pulse pile-up in photon-counting x-ray detectors.
Med Phys. 2016 Mar;43(3):1295-8. doi: 10.1118/1.4941743.
8
Vision 20/20: Single photon counting x-ray detectors in medical imaging.
Med Phys. 2013 Oct;40(10):100901. doi: 10.1118/1.4820371.
9
Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM).
Inverse Probl. 2011 Nov 1;27(11). doi: 10.1088/0266-5611/27/11/115012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验