Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University, Durham, NC 27710, United States of America.
Phys Med Biol. 2022 Jul 18;67(15). doi: 10.1088/1361-6560/ac7d34.
Photon-counting CT (PCCT) has better dose efficiency and spectral resolution than energy-integrating CT, which is advantageous for material decomposition. Unfortunately, the accuracy of PCCT-based material decomposition is limited due to spectral distortions in the photon-counting detector (PCD).In this work, we demonstrate a deep learning (DL) approach that compensates for spectral distortions in the PCD and improves accuracy in material decomposition by using decomposition maps provided by high-dose multi-energy-integrating detector (EID) data as training labels. We use a 3D U-net architecture and compare networks with PCD filtered back projection (FBP) reconstruction (FBP2Decomp), PCD iterative reconstruction (Iter2Decomp), and PCD decomposition (Decomp2Decomp) as the input.We found that our Iter2Decomp approach performs best, but DL outperforms matrix inversion decomposition regardless of the input. Compared to PCD matrix inversion decomposition, Iter2Decomp gives 27.50% lower root mean squared error (RMSE) in the iodine (I) map and 59.87% lower RMSE in the photoelectric effect (PE) map. In addition, it increases the structural similarity (SSIM) by 1.92%, 6.05%, and 9.33% in the I, Compton scattering (CS), and PE maps, respectively. When taking measurements from iodine and calcium vials, Iter2Decomp provides excellent agreement with multi-EID decomposition. One limitation is some blurring caused by our DL approach, with a decrease from 1.98 line pairs/mm at 50% modulation transfer function (MTF) with PCD matrix inversion decomposition to 1.75 line pairs/mm at 50% MTF when using Iter2Decomp.Overall, this work demonstrates that our DL approach with high-dose multi-EID derived decomposition labels is effective at generating more accurate material maps from PCD data. More accurate preclinical spectral PCCT imaging such as this could serve for developing nanoparticles that show promise in the field of theranostics (therapy and diagnostics).
光子计数 CT(PCCT)比能量积分 CT 具有更好的剂量效率和光谱分辨率,这有利于物质分解。不幸的是,由于光子计数探测器(PCD)中的光谱失真,基于 PCCT 的物质分解的准确性受到限制。在这项工作中,我们展示了一种深度学习(DL)方法,该方法通过使用高剂量多能量积分探测器(EID)数据的分解图作为训练标签,补偿 PCD 中的光谱失真,并提高物质分解的准确性。我们使用 3D U-net 架构,并比较了使用 PCD 滤波反投影(FBP)重建(FBP2Decomp)、PCD 迭代重建(Iter2Decomp)和 PCD 分解(Decomp2Decomp)作为输入的网络。我们发现我们的 Iter2Decomp 方法表现最好,但无论输入如何,DL 都优于矩阵反演分解。与 PCD 矩阵反演分解相比,Iter2Decomp 在碘(I)图中的均方根误差(RMSE)降低 27.50%,光电效应(PE)图中的 RMSE 降低 59.87%。此外,它分别使碘、康普顿散射(CS)和光电效应图的结构相似性(SSIM)提高了 1.92%、6.05%和 9.33%。当从碘和钙小瓶进行测量时,Iter2Decomp 与多 EID 分解具有极好的一致性。一个限制是我们的 DL 方法造成的一些模糊,从 PCD 矩阵反演分解的 50%调制传递函数(MTF)的 1.98 线对/mm 下降到使用 Iter2Decomp 的 50% MTF 的 1.75 线对/mm。总的来说,这项工作表明,我们的方法使用高剂量多 EID 衍生的分解标签,从 PCD 数据生成更准确的物质图是有效的。这种更准确的临床前光谱 PCCT 成像可以用于开发在治疗学(治疗和诊断)领域有前景的纳米颗粒。