Suppr超能文献

一种用于快速且可推广的光子计数显微 CT 图像去噪的深度学习方法。

A Deep Learning Approach for Rapid and Generalizable Denoising of Photon-Counting Micro-CT Images.

机构信息

Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Tomography. 2023 Jul 2;9(4):1286-1302. doi: 10.3390/tomography9040102.

Abstract

Photon-counting CT (PCCT) is powerful for spectral imaging and material decomposition but produces noisy weighted filtered backprojection (wFBP) reconstructions. Although iterative reconstruction effectively denoises these images, it requires extensive computation time. To overcome this limitation, we propose a deep learning (DL) model, UnetU, which quickly estimates iterative reconstruction from wFBP. Utilizing a 2D U-net convolutional neural network (CNN) with a custom loss function and transformation of wFBP, UnetU promotes accurate material decomposition across various photon-counting detector (PCD) energy threshold settings. UnetU outperformed multi-energy non-local means (ME NLM) and a conventional denoising CNN called UnetwFBP in terms of root mean square error (RMSE) in test set reconstructions and their respective matrix inversion material decompositions. Qualitative results in reconstruction and material decomposition domains revealed that UnetU is the best approximation of iterative reconstruction. In reconstructions with varying undersampling factors from a high dose ex vivo scan, UnetU consistently gave higher structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) to the fully sampled iterative reconstruction than ME NLM and UnetwFBP. This research demonstrates UnetU's potential as a fast (i.e., 15 times faster than iterative reconstruction) and generalizable approach for PCCT denoising, holding promise for advancing preclinical PCCT research.

摘要

光子计数 CT(PCCT)在光谱成像和物质分解方面功能强大,但会产生噪声加权滤波反投影(wFBP)重建。尽管迭代重建可以有效地对这些图像进行去噪,但它需要大量的计算时间。为了克服这一限制,我们提出了一种深度学习(DL)模型,即 UnetU,它可以从 wFBP 快速估计迭代重建。利用带有自定义损失函数和 wFBP 变换的 2D U-net 卷积神经网络(CNN),UnetU 促进了在各种光子计数探测器(PCD)能量阈值设置下的准确物质分解。在测试集重建及其各自的矩阵反演物质分解的均方根误差(RMSE)方面,UnetU 优于多能量非局部均值(ME NLM)和一种称为 UnetwFBP 的传统去噪 CNN。在重建和物质分解领域的定性结果表明,UnetU 是迭代重建的最佳近似。在从高剂量离体扫描中具有不同欠采样因子的重建中,与 ME NLM 和 UnetwFBP 相比,UnetU 始终为完全采样迭代重建提供更高的结构相似性(SSIM)和峰值信噪比(PSNR)。这项研究表明,UnetU 作为一种快速(即比迭代重建快 15 倍)和通用的 PCCT 去噪方法具有潜力,有望推进临床前 PCCT 研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f10/10366887/096fd7ee84b3/tomography-09-00102-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验