Suppr超能文献

栖息地河流微生物群对圈养中国大鲵共生微生物群和多器官基因表达的影响

Effects of Habitat River Microbiome on the Symbiotic Microbiota and Multi-Organ Gene Expression of Captive-Bred Chinese Giant Salamander.

作者信息

Zhu Wei, Zhao Chunlin, Feng Jianyi, Chang Jiang, Zhu Wenbo, Chang Liming, Liu Jiongyu, Xie Feng, Li Cheng, Jiang Jianping, Zhao Tian

机构信息

Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China.

Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China.

出版信息

Front Microbiol. 2022 Jun 13;13:884880. doi: 10.3389/fmicb.2022.884880. eCollection 2022.

Abstract

The reintroduction of captive-bred individuals is a primary approach to rebuild the wild populations of the Chinese giant salamander (), the largest extant amphibian species. However, the complexity of the wild habitat (e.g., diverse microorganisms and potential pathogens) potentially threatens the survival of reintroduced individuals. In this study, fresh (i.e., containing environmental microbiota) or sterilized river sediments (120°C sterilized treatment) were added to the artificial habitats to treat the larvae of the Chinese giant salamander (control group-Cnt: 20 individuals, treatment group 1 with fresh river sediments-T1: 20 individuals, and treatment group 2 with sterilized river sediments-T2: 20 individuals). The main objective of this study was to test whether this procedure could provoke their wild adaptability from the perspective of commensal microbiotas (skin, oral cavity, stomach, and gut) and larvae transcriptomes (skin, spleen, liver, and brain). Our results indicated that the presence of habitat sediments (whether fresh or sterilized) reshaped the oral bacterial community composition. Specifically, Firmicutes decreased dramatically from ~70% to ~20-25% (mainly contributed by ), while Proteobacteria increased from ~6% to ~31-36% (mainly contributed by Gammaproteobacteria). Consequently, the proportion of antifungal operational taxonomic units (OTUs) increased, and the function of oral microbiota likely shifted from growth-promoting to pathogen defense. Interestingly, the skin microbiota, rather than the colonization of habitat microbiota, was the major source of the pre-treated oral microbiota. From the host perspective, the transcriptomes of all four organs were changed for treated individuals. Specifically, the proteolysis and apoptosis in the skin were promoted, and the transcription of immune genes was activated in the skin, spleen, and liver. Importantly, more robust immune activation was detected in individuals treated with sterilized sediments. These results suggested that the pathogen defense of captive-bred individuals was improved after being treated, which may benefit their survival in the wild. Taken together, our results suggested that the pre-exposure of captive-bred Chinese giant salamander individuals to habitat sediments could be considered and added into the reintroduction processes to help them better adapt to wild conditions.

摘要

放归人工繁育个体是重建中国大鲵野生种群的主要方法,中国大鲵是现存最大的两栖类物种。然而,野生栖息地的复杂性(如多样的微生物和潜在病原体)可能威胁放归个体的生存。在本研究中,将新鲜的(即含有环境微生物群的)或经过灭菌处理的河底沉积物(120℃灭菌处理)添加到人工栖息地中,以处理中国大鲵幼体(对照组-Cnt:20只个体,添加新鲜河底沉积物的处理组1-T1:20只个体,添加灭菌河底沉积物的处理组2-T2:20只个体)。本研究的主要目的是从共生微生物群(皮肤、口腔、胃和肠道)和幼体转录组(皮肤、脾脏、肝脏和大脑)的角度,测试该程序是否能激发它们的野生适应性。我们的结果表明,栖息地沉积物的存在(无论是新鲜的还是经过灭菌处理的)重塑了口腔细菌群落组成。具体而言,厚壁菌门从约70%急剧下降至约20%-25%(主要由 贡献),而变形菌门从约6%增加至约31%-36%(主要由γ-变形菌纲贡献)。因此,抗真菌可操作分类单元(OTU)的比例增加,口腔微生物群的功能可能从促进生长转变为病原体防御。有趣的是,皮肤微生物群而非栖息地微生物群的定殖是预处理后口腔微生物群的主要来源。从宿主角度来看,处理后的个体所有四个器官的转录组都发生了变化。具体而言,皮肤中的蛋白水解和细胞凋亡得到促进,皮肤、脾脏和肝脏中免疫基因的转录被激活。重要的是,在接受灭菌沉积物处理的个体中检测到更强的免疫激活。这些结果表明,人工繁育个体在经过处理后病原体防御能力得到改善,这可能有利于它们在野外的生存。综上所述,我们的结果表明,可以考虑将人工繁育的中国大鲵个体预先暴露于栖息地沉积物,并将其纳入放归过程,以帮助它们更好地适应野外条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c0f/9234736/a26592f69b53/fmicb-13-884880-g0001.jpg

相似文献

2
Reintroduction modifies the intraspecific variations of symbiotic microbes in captive bred Chinese giant salamander.
Front Microbiol. 2022 Dec 1;13:1062604. doi: 10.3389/fmicb.2022.1062604. eCollection 2022.
3
4
Captivity-Induced Changes in the Skin Microbial Communities of Hellbenders (Cryptobranchus alleganiensis).
Microb Ecol. 2019 Apr;77(3):782-793. doi: 10.1007/s00248-018-1258-1. Epub 2018 Sep 12.
5
Bacterial community analysis of the skin microbiota of cultured Chinese giant salamander infected with .
Front Microbiol. 2024 Apr 24;15:1356161. doi: 10.3389/fmicb.2024.1356161. eCollection 2024.
6
Captivity Shapes the Gut Microbiota of Andean Bears: Insights into Health Surveillance.
Front Microbiol. 2017 Jul 13;8:1316. doi: 10.3389/fmicb.2017.01316. eCollection 2017.
7
Age-related changes in the gut microbiota of the Chinese giant salamander (Andrias davidianus).
Microbiologyopen. 2019 Jul;8(7):e00778. doi: 10.1002/mbo3.778. Epub 2018 Dec 25.
8
Changes of intestinal microbiota in the giant salamander () during growth based on high-throughput sequencing.
Front Microbiol. 2023 Mar 16;14:1052824. doi: 10.3389/fmicb.2023.1052824. eCollection 2023.

引用本文的文献

2
Research Status and Prospect of Amphibian Symbiotic Microbiota.
Animals (Basel). 2025 Mar 25;15(7):934. doi: 10.3390/ani15070934.
3
Comparing skin swabs, buccal swabs, and toe clips for amphibian genetic sampling, a case study with a small anuran ().
Biol Methods Protoc. 2024 May 16;9(1):bpae030. doi: 10.1093/biomethods/bpae030. eCollection 2024.
4
Bacterial community analysis of the skin microbiota of cultured Chinese giant salamander infected with .
Front Microbiol. 2024 Apr 24;15:1356161. doi: 10.3389/fmicb.2024.1356161. eCollection 2024.
5
Reintroduction modifies the intraspecific variations of symbiotic microbes in captive bred Chinese giant salamander.
Front Microbiol. 2022 Dec 1;13:1062604. doi: 10.3389/fmicb.2022.1062604. eCollection 2022.
6
Albinism in the largest extant amphibian: A metabolic, endocrine, or immune problem?
Front Endocrinol (Lausanne). 2022 Nov 28;13:1053732. doi: 10.3389/fendo.2022.1053732. eCollection 2022.

本文引用的文献

1
Animal gut microbiome mediates the effects of antibiotic pollution on an artificial freshwater system.
J Hazard Mater. 2022 Mar 5;425:127968. doi: 10.1016/j.jhazmat.2021.127968. Epub 2021 Dec 1.
2
Habitat Disturbance Linked with Host Microbiome Dispersion and Bd Dynamics in Temperate Amphibians.
Microb Ecol. 2022 Oct;84(3):901-910. doi: 10.1007/s00248-021-01897-3. Epub 2021 Oct 20.
3
Captivity reduces diversity and shifts composition of the Brown Kiwi microbiome.
Anim Microbiome. 2021 Jul 8;3(1):48. doi: 10.1186/s42523-021-00109-0.
4
Assembly of the amphibian microbiome is influenced by the effects of land-use change on environmental reservoirs.
Environ Microbiol. 2021 Aug;23(8):4595-4611. doi: 10.1111/1462-2920.15653. Epub 2021 Jul 13.
5
Seasonal dynamics of diet-gut microbiota interaction in adaptation of yaks to life at high altitude.
NPJ Biofilms Microbiomes. 2021 Apr 20;7(1):38. doi: 10.1038/s41522-021-00207-6.
6
Environmental Temperatures Affect the Gastrointestinal Microbes of the Chinese Giant Salamander.
Front Microbiol. 2021 Mar 19;12:543767. doi: 10.3389/fmicb.2021.543767. eCollection 2021.
7
Niche divergence of evolutionarily significant units with implications for repopulation programs of the world's largest amphibians.
Sci Total Environ. 2020 Oct 10;738:140269. doi: 10.1016/j.scitotenv.2020.140269. Epub 2020 Jun 18.
8
The Behavior of Amphibians Shapes Their Symbiotic Microbiomes.
mSystems. 2020 Jul 28;5(4):e00626-20. doi: 10.1128/mSystems.00626-20.
9
Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing.
Nat Rev Drug Discov. 2020 Sep;19(9):609-633. doi: 10.1038/s41573-020-0072-x. Epub 2020 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验