Zhai Runliang, Zhao Chunlin, Chang Liming, Liu Jiongyu, Zhao Tian, Jiang Jianping, Zhu Wei
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China.
University of Chinese Academy of Sciences, Beijing, 101408, China.
BMC Genomics. 2025 May 13;26(1):475. doi: 10.1186/s12864-025-11644-4.
The Chinese giant salamander (CGS, Andrias davidianus), a flagship amphibian species, is highly vulnerable to high temperatures, posing a significant threat under future climate change. Previous research linked this susceptibility to liver energy deficiency, accompanied by shifts in gut microbiota and reduced food conversion rates, raising questions about the role of the gut-liver axis in mediating heat sensitivity. This study investigated the responses of Chinese giant salamander larvae to a temperature gradient (10-30 °C), assessing physiological changes alongside histological, gut metagenomic, and tissue transcriptomic analyses. Temperatures above 20 °C led to mortality, which resulted in delayed growth. Histological and transcriptomic data revealed metabolic exhaustion and liver fibrosis in heat-stressed salamanders, underscoring the liver's critical role in heat sensitivity. While heat stress altered the gut microbiota's community structure, their functional profiles, especially in nutrient absorption and transformation, remained stable. Both gut and liver showed temperature-dependent transcriptional changes, sharing some common variations in actins, heat shock proteins, and genes related to transcription and translation. However, their energy metabolism exhibited opposite trends: it was downregulated in the liver but upregulated in the gut, with the gut showing increased activity in the pentose phosphate pathway and oxidative phosphorylation, potentially countering metabolic exhaustion. Our findings reveal that the liver of the larvae exhibits greater thermal sensitivity than the gut, and the gut-liver axis plays a limited role in mediating thermal intolerance. This study enhances mechanistic understanding of CGS heat susceptibility, providing a foundation for targeted conservation strategies in the face of climate change.
中国大鲵(CGS,Andrias davidianus)是一种旗舰两栖动物物种,极易受到高温影响,在未来气候变化下构成重大威胁。先前的研究将这种易感性与肝脏能量缺乏联系起来,同时伴随着肠道微生物群的变化和食物转化率的降低,这引发了关于肠-肝轴在介导热敏感性方面作用的疑问。本研究调查了中国大鲵幼体对温度梯度(10-30°C)的反应,同时进行了生理变化评估以及组织学、肠道宏基因组学和组织转录组学分析。20°C以上的温度导致死亡,并导致生长延迟。组织学和转录组学数据显示,热应激的大鲵出现代谢衰竭和肝纤维化,突出了肝脏在热敏感性中的关键作用。虽然热应激改变了肠道微生物群的群落结构,但其功能概况,特别是在营养吸收和转化方面,保持稳定。肠道和肝脏均显示出温度依赖性转录变化,在肌动蛋白、热休克蛋白以及与转录和翻译相关的基因方面存在一些共同变化。然而,它们的能量代谢呈现相反趋势:肝脏中能量代谢下调,而肠道中能量代谢上调;肠道中磷酸戊糖途径和氧化磷酸化的活性增加,可能抵消代谢衰竭。我们的研究结果表明,幼体的肝脏比肠道表现出更高的热敏感性,并且肠-肝轴在介导热不耐受方面作用有限。本研究增强了对中国大鲵热易感性的机制理解,为应对气候变化制定有针对性的保护策略奠定了基础。