Suppr超能文献

一种用于 COVID-19 住院患者的新型插管预测模型:OTO-COVID-19 评分模型。

A novel intubation prediction model for patients hospitalized with COVID-19: the OTO-COVID-19 scoring model.

机构信息

Department of Internal Medicine, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey.

Department of Statistics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey.

出版信息

Curr Med Res Opin. 2022 Sep;38(9):1509-1514. doi: 10.1080/03007995.2022.2096350. Epub 2022 Jul 10.

Abstract

OBJECTIVE

The method for predicting the risk of intubation in patients with coronavirus disease 2019 (COVID-19) is yet to be standardized. This study aimed to introduce a new disease prognosis scoring model that may predict the intubation risk based on the symptoms, signs, and laboratory tests of patients hospitalized with the diagnosis of COVID-19.

METHOD

This cross-sectional retrospective study analyzed the intubation status of 733 patients hospitalized with COVID-19 diagnosis between March and December 2020 at Ondokuz Mayıs University Faculty of Medicine, Turkey, based on 33 variables. Binary logistic regression analysis was used to select the variables that significantly affect intubation, which constitute the risk factors. The Chi-square Automatic Interaction Detection algorithm, one of the data mining methods, was used to determine the threshold values of the important variables for intubation classification.

RESULTS

The following variables found were mostly associated with intubation: C-reactive protein, lactate dehydrogenase, neutrophil-to-lymphocyte ratio, age, lymphocyte count, and malignancy. The logistic function based on these variables correctly predicted 81.13% of intubated (sensitivity), 99.52% of nonintubated (specificity), and 96.86% of both intubated and nonintubated (accurate classification rate) patients. The scoring model revealed the following risk statuses for the intubated patients: very high risk, 75.47%; moderate risk, 20.75%; and very low risk, 3.77%.

CONCLUSIONS

On the basis of certain variables measured at admission, the OTO-COVID-19 scoring model may help clinicians identify patients at the risk of intubation and subsequently provide a prompt and effective treatment at the earliest.

摘要

目的

预测 2019 年冠状病毒病(COVID-19)患者插管风险的方法尚未标准化。本研究旨在介绍一种新的疾病预后评分模型,该模型可能基于住院 COVID-19 患者的症状、体征和实验室检查结果预测插管风险。

方法

本回顾性横断面研究分析了 2020 年 3 月至 12 月期间土耳其奥登尼兹·马伊斯大学医学院收治的 733 例 COVID-19 诊断患者的插管状态,共涉及 33 个变量。使用二项逻辑回归分析选择显著影响插管的变量,这些变量构成了危险因素。使用数据挖掘方法之一的卡方自动交互检测算法确定用于插管分类的重要变量的阈值。

结果

与插管最相关的变量包括 C 反应蛋白、乳酸脱氢酶、中性粒细胞与淋巴细胞比值、年龄、淋巴细胞计数和恶性肿瘤。基于这些变量的逻辑函数正确预测了 81.13%的插管患者(敏感性)、99.52%的非插管患者(特异性)和 96.86%的插管和非插管患者(准确分类率)。评分模型揭示了插管患者的以下风险状况:极高风险,75.47%;中度风险,20.75%;极低风险,3.77%。

结论

基于入院时测量的某些变量,OTO-COVID-19 评分模型可以帮助临床医生识别有插管风险的患者,并在最早的时间内提供及时有效的治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验