Suppr超能文献

新冠病毒肺炎患者中新冠病毒肺炎的预测规则:一种分类与回归树(CART)分析模型

A Predictive Rule for COVID-19 Pneumonia Among COVID-19 Patients: A Classification and Regression Tree (CART) Analysis Model.

作者信息

Fukui Sayato, Inui Akihiro, Komatsu Takayuki, Ogura Kanako, Ozaki Yutaka, Sugita Manabu, Saita Mizue, Kobayashi Daiki, Naito Toshio

机构信息

Department of General Medicine, Faculty of Medicine, Juntendo University, Tokyo, JPN.

Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Tokyo, JPN.

出版信息

Cureus. 2023 Sep 13;15(9):e45199. doi: 10.7759/cureus.45199. eCollection 2023 Sep.

Abstract

BACKGROUND

In this study, we aimed to identify predictive factors for coronavirus disease 2019 (COVID-19) patients with complicated pneumonia and determine which COVID-19 patients should undergo computed tomography (CT) using classification and regression tree (CART) analysis.

METHODS

This retrospective cross-sectional survey was conducted at a university hospital. We recruited patients diagnosed with COVID-19 between January 1 and December 31, 2020. We extracted clinical information (e.g., vital signs, symptoms, laboratory results, and CT findings) from patient records. Factors potentially predicting COVID-19 pneumonia were analyzed using Student's -test, the chi-square test, and a CART analysis model.

RESULTS

Among 221 patients (119 men (53.8%); mean age, 54.59±18.61 years), 160 (72.4%) had pneumonia. The CART analysis revealed that patients were at high risk of pneumonia if they had C-reactive protein (CRP) levels of >1.60 mg/dL (incidence of pneumonia: 95.7%); CRP levels of ≤1.60 mg/dL + age >35.5 years + lactate dehydrogenase (LDH)>225.5 IU/L (incidence of pneumonia: 95.5%); and CRP levels of ≤1.60 mg/dL + age >35.5 years + LDH≤225.5 IU/L + hemoglobin ≤14.65 g/dL (incidence of pneumonia: 69.6%). The area of the curve of the receiver operating characteristic of the model was 0.860 (95% CI: 0.804-0.915), indicating sufficient explanatory power.

CONCLUSIONS

The present results are useful for deciding whether to perform CT in COVID-19 patients. High-risk patients such as those mentioned above should undergo CT.

摘要

背景

在本研究中,我们旨在确定2019冠状病毒病(COVID-19)合并肺炎患者的预测因素,并使用分类与回归树(CART)分析确定哪些COVID-19患者应接受计算机断层扫描(CT)检查。

方法

这项回顾性横断面调查在一家大学医院进行。我们招募了2020年1月1日至12月31日期间被诊断为COVID-19的患者。我们从患者记录中提取临床信息(如生命体征、症状、实验室检查结果和CT表现)。使用Student's检验、卡方检验和CART分析模型分析可能预测COVID-19肺炎的因素。

结果

在221例患者中(119例男性(53.8%);平均年龄54.59±18.61岁),160例(72.4%)患有肺炎。CART分析显示,如果患者C反应蛋白(CRP)水平>1.60mg/dL(肺炎发生率:95.7%);CRP水平≤1.60mg/dL+年龄>35.5岁+乳酸脱氢酶(LDH)>225.5IU/L(肺炎发生率:95.5%);以及CRP水平≤1.60mg/dL+年龄>35.5岁+LDH≤225.5IU/L+血红蛋白≤14.65g/dL(肺炎发生率:69.6%),则这些患者发生肺炎的风险较高。该模型的受试者工作特征曲线下面积为0.860(95%CI:0.804-0.915),表明具有足够的解释力。

结论

本研究结果有助于决定是否对COVID-19患者进行CT检查。上述高危患者应接受CT检查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffab/10500617/87c441a010ce/cureus-0015-00000045199-i01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验