Jahncke Jennifer N, Wright Kevin M
Neuroscience Graduate Program, Oregan Health & Science University, Portland, Oregon, USA.
Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA.
Dev Dyn. 2023 Jan;252(1):61-80. doi: 10.1002/dvdy.516. Epub 2022 Jul 18.
The glycoprotein dystroglycan was first identified in muscle, where it functions as part of the dystrophin glycoprotein complex to connect the extracellular matrix to the actin cytoskeleton. Mutations in genes involved in the glycosylation of dystroglycan cause a form of congenital muscular dystrophy termed dystroglycanopathy. In addition to its well-defined role in regulating muscle integrity, dystroglycan is essential for proper central and peripheral nervous system development. Patients with dystroglycanopathy can present with a wide range of neurological perturbations, but unraveling the complex role of Dag1 in the nervous system has proven to be a challenge. Over the past two decades, animal models of dystroglycanopathy have been an invaluable resource that has allowed researchers to elucidate dystroglycan's many roles in neural circuit development. In this review, we summarize the pathways involved in dystroglycan's glycosylation and its known interacting proteins, and discuss how it regulates neuronal migration, axon guidance, synapse formation, and its role in non-neuronal cells.
糖蛋白肌营养不良聚糖最初在肌肉中被发现,它作为肌营养不良蛋白糖蛋白复合体的一部分发挥作用,将细胞外基质与肌动蛋白细胞骨架连接起来。参与肌营养不良聚糖糖基化的基因突变会导致一种称为糖基化肌营养不良症的先天性肌营养不良症。除了在调节肌肉完整性方面的明确作用外,肌营养不良聚糖对于中枢和外周神经系统的正常发育也至关重要。患有糖基化肌营养不良症的患者可能会出现广泛的神经功能紊乱,但要阐明Dag1在神经系统中的复杂作用已被证明是一项挑战。在过去的二十年中,糖基化肌营养不良症的动物模型一直是一种宝贵的资源,使研究人员能够阐明肌营养不良聚糖在神经回路发育中的多种作用。在这篇综述中,我们总结了参与肌营养不良聚糖糖基化的途径及其已知的相互作用蛋白,并讨论了它如何调节神经元迁移、轴突导向、突触形成以及它在非神经元细胞中的作用。