Suppr超能文献

在移动床生物膜反应器中进行部分反硝化和厌氧氨氧化过程中的氢营养型反硝化过程中亚硝酸盐积累的研究。

Investigation of nitrite accumulation by hydrogenotrophic denitrification in a moving bed biofilm reactor for partial denitrification and anammox process.

机构信息

Interdisciplinary Centre for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan E-mail:

Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.

出版信息

Water Sci Technol. 2022 Jun;85(12):3396-3407. doi: 10.2166/wst.2022.187.

Abstract

The partial denitrification and anammox (PDA) process has received attention for its ability to optimize treatment of wastewater containing a low NH-N concentration. This study investigated the suitable operational conditions for NO-N accumulation by hydrogenotrophic denitrification (HD) in operation of a laboratory-scale moving bed biofilm reactor, for future application in the PDA process. NO-N accumulation was achieved by minimizing the H flow rate under optimized conditions (i.e., 15 mL/min H flow rate, 40 mg-N/L influent NO-N, 7.0 h hydraulic retention time, and 2 L working volume). Hydrogenophaga comprised 39.2% of the bacterial abundance after NO-N accumulated, indicating its contribution to the NO-N accumulation. In addition, an intermittent H supply maintained the NO-N accumulation rate (NAR) and maximized the nitrite accumulation efficiency (NAE). A H supply ratio of 0.7 (i.e., ON: 7 min, OFF: 3 min) was optimal, which induced increases in NAR, NAE, and the NO-N removal efficiency that reached 0.07±0.01 kg-N/m/d, 64.4±14.5%, and 89.2±8.9%, respectively. The ratio of H supply rate to the NO-N loading rate was calculated as 4.3 in this experiment, which may represent the optimal balance for maximization of NO-N accumulation by HD.

摘要

部分反硝化和厌氧氨氧化(PDA)工艺因其能够优化处理低 NH-N 浓度废水而受到关注。本研究考察了在实验室规模移动床生物膜反应器运行中,通过氢营养型反硝化(HD)实现 NO-N 积累的适宜操作条件,以便将来应用于 PDA 工艺。通过在优化条件下(即 H 流速为 15 mL/min,进水 NO-N 为 40 mg-N/L,水力停留时间为 7.0 h,工作体积为 2 L)最小化 H 流量实现了 NO-N 积累。NO-N 积累后,氢噬菌属占细菌丰度的 39.2%,表明其对 NO-N 积累有贡献。此外,间歇式 H 供应维持了 NO-N 积累速率(NAR)并最大化了亚硝酸盐积累效率(NAE)。H 供应比为 0.7(即 ON:7 min,OFF:3 min)是最佳的,这导致 NAR、NAE 和 NO-N 去除效率分别提高到 0.07±0.01 kg-N/m/d、64.4±14.5%和 89.2±8.9%。在本实验中,H 供应率与 NO-N 负荷率的比值计算为 4.3,这可能代表了通过 HD 最大化 NO-N 积累的最佳平衡。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验