Abbas Hisham A, Shaker Ghada H, Mosallam Farag M, Gomaa Salwa E
Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University,, Zagazig, Egypt.
Drug Microbiology Lab., Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
AMB Express. 2022 Jun 30;12(1):84. doi: 10.1186/s13568-022-01426-6.
Staphylococcus aureus is a prevalent etiological agent of health care associated and community acquired infections. Antibiotic abuse resulted in developing multidrug resistance in S. aureus that complicates treatment of infections. Targeting bacterial virulence using FDA approved medication offers an alternative to the antibiotics with no stress on bacterial viability. Using nanomaterials as anti-virulence agent against S. aureus virulence factors is a valuable approach. This study aims to investigate the impact of metformin (MET), metformin nano (MET-Nano), silver metformin nano structure (Ag-MET-Ns) and silver nanoparticles (AgNPs) on S. aureus virulence and pathogenicity. The in vitro results showed a higher inhibitory activity against S. aureus virulence factors with both MET-Nano and Ag-MET-Ns treatment. However, genotypically, it was found that except for agrA and icaR genes that are upregulated, the tested agents significantly downregulated the expression of crtM, sigB, sarA and fnbA genes, with Ag-MET-Ns being the most efficient one. MET-Nano exhibited the highest protection against S. aureus infection in mice. These data indicate the promising anti-virulence activity of nanoformulations especially Ag-MET-Ns against multidrug resistant S. aureus by inhibiting quorum sensing signaling system.
金黄色葡萄球菌是医疗保健相关感染和社区获得性感染的常见病原体。抗生素滥用导致金黄色葡萄球菌产生多重耐药性,使感染治疗变得复杂。使用美国食品药品监督管理局(FDA)批准的药物靶向细菌毒力为抗生素提供了一种替代方案,且对细菌生存能力没有压力。使用纳米材料作为对抗金黄色葡萄球菌毒力因子的抗毒力剂是一种有价值的方法。本研究旨在研究二甲双胍(MET)、纳米二甲双胍(MET-Nano)、银-二甲双胍纳米结构(Ag-MET-Ns)和银纳米颗粒(AgNPs)对金黄色葡萄球菌毒力和致病性的影响。体外结果显示,MET-Nano和Ag-MET-Ns处理对金黄色葡萄球菌毒力因子均具有较高的抑制活性。然而,从基因层面来看,发现除了上调的agrA和icaR基因外,受试药物显著下调了crtM、sigB、sarA和fnbA基因的表达,其中Ag-MET-Ns最为有效。MET-Nano在小鼠中对金黄色葡萄球菌感染表现出最高的保护作用。这些数据表明,纳米制剂尤其是Ag-MET-Ns通过抑制群体感应信号系统,对多重耐药金黄色葡萄球菌具有有前景的抗毒力活性。