Suppr超能文献

基于电荷转移机制的几层多孔氮化碳锚定钴和镍用于光催化CO还原

Few-layer porous carbon nitride anchoring Co and Ni with charge transfer mechanism for photocatalytic CO reduction.

作者信息

Wang Jiajia, Song Youchao, Zuo Changjiang, Li Rui, Zhou Yuming, Zhang Yiwei, Wu Bo

机构信息

Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.

Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.

出版信息

J Colloid Interface Sci. 2022 Nov;625:722-733. doi: 10.1016/j.jcis.2022.04.153. Epub 2022 May 1.

Abstract

The low specific surface area and low charge transfer efficiency of conventional graphite carbon nitride (g-CN) are the main obstacles to its application in photocatalytic CO reduction. In this paper, graphite carbon nitride was protonated by phosphoric acid (HPO), and a new few-layer porous carbon nitride was prepared by intercalation polymerization with doping bimetal in the cavity of g-CN. Under visible light irradiation, the CO formation rate of Co/Ni co-doped g-CN can reach 13.55 μmol g h, which was 3.9 times higher than that of g-CN (3.49 μmol g h). The density functional theory (DFT) calculations showed that the addition of Co and Ni in the cavity of g-CN can induce bimetallic synergistic regulation of the electronic structure, thus improving the separation efficiency of charges and visible light capture ability of g-CN. Our work has great reference value for designing and synthesizing novel bimetallic co-doped g-CN photocatalytic materials.

摘要

传统石墨相氮化碳(g-CN)的低比表面积和低电荷转移效率是其在光催化CO还原应用中的主要障碍。本文中,石墨相氮化碳通过磷酸(H₃PO₄)进行质子化处理,并通过在g-CN的空腔中进行双金属掺杂的插层聚合制备了一种新型的少层多孔氮化碳。在可见光照射下,Co/Ni共掺杂g-CN的CO生成速率可达13.55 μmol g⁻¹ h⁻¹,这比g-CN(3.49 μmol g⁻¹ h⁻¹)高出3.9倍。密度泛函理论(DFT)计算表明,在g-CN的空腔中添加Co和Ni可诱导电子结构的双金属协同调控,从而提高g-CN的电荷分离效率和可见光捕获能力。我们的工作对于设计和合成新型双金属共掺杂g-CN光催化材料具有重要的参考价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验