State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China; Yangtze River Protection and Green Development Research Institute, Nanjing 210098, China; Research Center for Climate Change of Ministry of Water Resources, Nanjing 210029, China.
State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China.
Sci Total Environ. 2022 Oct 20;844:157034. doi: 10.1016/j.scitotenv.2022.157034. Epub 2022 Jun 27.
Reference evapotranspiration (ET0), as one important variable in climatology, hydrology, and agricultural science, plays an important role in the terrestrial hydrological cycle and agricultural irrigation. However, the ET0 estimation process is inaccurate due to the lack of weather stations and historical data. In this study, a new method of ET0 estimation was proposed to improve the ET0 estimation performance in regions with limited data. Four empirical models with different data requirements, Albrecht, Hargreaves-Samani, Priestley-Taylor, and Penman, were applied and optimized the parameters by the Shuffled Complex Evolution-University of Arizona algorithm with the ET0 calculated by the Penman-Monteith model as the reference value at 600 meteorological stations in China. Two machine learning models, Random Forest (RF) and Multiple Linear Regression (MLR) were used to establish the regionalization of the parameter of the empirical model. The result showed that parameter optimization could significantly improve ET0 estimation in different climate regions of China. The Penman model has the strongest physical foundation and the highest estimation accuracy, followed by the Hargeaves-Samani and Priestley-Taylor model. The mass-transfer-based model, Albrecht, could only estimate regional ET0 efficiently after parameter optimization. Based on the more advanced RF machine learning regionalization method that considers complex linear relationships of variables, ET0 estimation in regions lacking data could be improved efficiently. Machine learning could be used to describe the ET0 model parameters in different regions because of the similarity. The combination of machine learning and empirical model could provide a new method for ET0 estimation in data deficient regions.
参考蒸散量(ET0)作为气候学、水文学和农业科学中的一个重要变量,在陆地水循环和农业灌溉中起着重要作用。然而,由于缺乏气象站和历史数据,ET0 的估计过程并不准确。在本研究中,提出了一种新的 ET0 估计方法,以提高数据有限地区的 ET0 估计性能。应用了四种具有不同数据要求的经验模型,即 Albrecht、Hargreaves-Samani、Priestley-Taylor 和 Penman,并通过 Shuffled Complex Evolution-University of Arizona 算法对参数进行了优化,该算法以 Penman-Monteith 模型计算的 ET0 为参考值,在中国的 600 个气象站进行了优化。使用了两种机器学习模型,随机森林(RF)和多元线性回归(MLR),建立了经验模型参数的区域化模型。结果表明,参数优化可以显著提高中国不同气候区的 ET0 估计精度。Penman 模型具有最强的物理基础和最高的估计精度,其次是 Hargreaves-Samani 和 Priestley-Taylor 模型。基于质量传递的 Albrecht 模型只能在参数优化后才能有效地估计区域 ET0。基于考虑变量复杂线性关系的更先进的 RF 机器学习区域化方法,可以有效地提高数据缺乏地区的 ET0 估计精度。由于相似性,机器学习可用于描述不同地区的 ET0 模型参数。机器学习和经验模型的结合可以为数据缺乏地区的 ET0 估计提供一种新方法。