Rajeswaran Walajapet, Ashkar Shireen R, Lee Pil H, Yeomans Larisa, Shin Yeonoh, Franzblau Scott G, Murakami Katsuhiko S, Showalter Hollis D, Garcia George A
Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States.
Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109-1065, United States.
ACS Infect Dis. 2022 Aug 12;8(8):1422-1438. doi: 10.1021/acsinfecdis.1c00636. Epub 2022 Jun 30.
Rifampin (RMP), a very potent inhibitor of the (MTB) RNA polymerase (RNAP), remains a keystone in the treatment of tuberculosis since its introduction in 1965. However, rifamycins suffer from serious drawbacks, including 3- to 9-month treatment times, Cyp450 induction (particularly problematic for HIV-MTB coinfection), and resistant mutations within RNAP that yield RIF-resistant (RIF) MTB strains. There is a clear and pressing need for improved TB therapies. We have utilized a structure-based drug design approach to synthesize and test novel benzoxazinorifamycins (bxRIF), congeners of the clinical candidate rifalazil. Our goal is to gain binding interactions that will compensate for the loss of RIF-binding affinity to the (RIF) MTB RNAP and couple those with substitutions that we have previously found that essentially eliminate Cyp450 induction. Herein, we report a systematic exploration of 42 substituted bxRIFs that have yielded an analogue () that has an excellent in vitro activity (MTB RNAP inhibition, MIC, MBC), enhanced (∼30-fold > RMP) activity against RIF MTB RNAP, negligible hPXR activation, good mouse pharmacokinetics, and excellent activity with no observable adverse effects in an acute mouse TB model. In a time-kill study, has a 7 day MBC that is ∼10-fold more potent than RMP. These results suggest that may exhibit a faster kill rate than RMP, which could possibly reduce the clinical treatment time. Our synthetic protocol enabled the synthesis of ∼2 g of at >95% purity in 3 months, demonstrating the feasibility of scale-up synthesis of bxRIFs for preclinical and clinical studies.
利福平(RMP)是结核分枝杆菌(MTB)RNA聚合酶(RNAP)的一种非常有效的抑制剂,自1965年引入以来,一直是结核病治疗的基石。然而,利福霉素存在严重缺陷,包括3至9个月的治疗时间、Cyp450诱导(对HIV-MTB合并感染尤其成问题)以及RNAP内的耐药突变,这些突变会产生耐利福平(RIF)的MTB菌株。显然迫切需要改进结核病治疗方法。我们利用基于结构的药物设计方法合成并测试了新型苯并恶嗪诺利福霉素(bxRIF),它是临床候选药物利福拉齐的类似物。我们的目标是获得能弥补RIF与耐RIF的MTB RNAP结合亲和力损失的结合相互作用,并将其与我们之前发现的基本消除Cyp450诱导的取代基相结合。在此,我们报告了对42种取代的bxRIFs的系统探索,结果产生了一种类似物(),它具有出色的体外活性(MTB RNAP抑制、MIC、MBC),对耐RIF的MTB RNAP的活性增强(比RMP高约30倍),hPXR激活可忽略不计,小鼠药代动力学良好,并且在急性小鼠结核病模型中具有出色的活性且无明显不良反应。在时间 - 杀菌研究中,该类似物的7天MBC比RMP强约10倍。这些结果表明该类似物可能比RMP表现出更快的杀菌速率,这可能会缩短临床治疗时间。我们的合成方案能够在3个月内以>95%的纯度合成约2 g该类似物,证明了扩大bxRIFs的合成规模用于临床前和临床研究的可行性。