Suppr超能文献

利用机器学习预测急诊科患者的住院情况。

Using Machine Learning for Predicting the Hospitalization of Emergency Department Patients.

机构信息

Hellenic Open University, Patra, Greece.

Sismanogleio General Hospital of Attica, Marousi, Greece.

出版信息

Stud Health Technol Inform. 2022 Jun 29;295:405-408. doi: 10.3233/SHTI220751.

Abstract

Artificial intelligence processes are increasingly being used in emergency medicine, notably for supporting clinical decisions and potentially improving healthcare services. This study investigated demographics, coagulation tests, and biochemical markers routinely used for patients seen in the Emergency Department (ED) concerning hospitalization. This retrospective observational study included 13,991 emergency department visits of patients who had undergone biomarker testing to a tertiary public hospital in Greece during 2020. After applying five well-known classifiers of the caret package for machine learning of the R programming language in the whole data set and to each ED unit separately, the best performance regarding AUC ROC was observed in the Pulmonology ED unit. Furthermore, among the five classification techniques evaluated, a random forest classifier outperformed other models.

摘要

人工智能处理在急诊医学中越来越多地被使用,特别是用于支持临床决策,并可能改善医疗服务。本研究调查了在希腊一家三级公立医院急诊部就诊的住院患者的人口统计学、凝血试验和生化标志物的常规使用情况。这项回顾性观察性研究包括了 2020 年在希腊一家三级公立医院进行生物标志物检测的 13991 例急诊就诊患者。在整个数据集和每个急诊部分别应用 R 编程语言 caret 包的五个著名的机器学习分类器后,在呼吸科急诊部观察到 AUC ROC 的最佳性能。此外,在所评估的五种分类技术中,随机森林分类器的表现优于其他模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验