Suppr超能文献

基于机器学习的急诊科患者住院预测。

Prediction of Hospitalization Using Machine Learning for Emergency Department Patients.

机构信息

School of Science and Technology, Hellenic Open University, Patras, Greece.

Department of Quality Control, Research and Continuing Education, Sismanogleio General Hospital, Marousi, Greece.

出版信息

Stud Health Technol Inform. 2022 May 25;294:145-146. doi: 10.3233/SHTI220422.

Abstract

The objective of this study was to evaluate the predictive capability of five machine learning models regarding the admission or discharge of emergency department patients. A Random Forest classifier outperformed other models with respect to the area under the receiver operating characteristic curve (AUC ROC).

摘要

本研究旨在评估五种机器学习模型在预测急诊科患者收治或出院方面的预测能力。随机森林分类器在接受者操作特征曲线下面积(AUC ROC)方面优于其他模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验