Hofer Dominik, Schmidt-Erfurth Ursula, Orlando José Ignacio, Goldbach Felix, Gerendas Bianca S, Seeböck Philipp
Vienna Reading Center, Department of Ophthalmology and Optometry, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
Yatiris Group, PLADEMA Institute, CON-ICET, Universidad Nacional del Centro de la Provincia de Buenos Aires, Gral. Pinto 399, Tandil, Buenos Aires, Argentina.
Biomed Opt Express. 2022 Apr 4;13(5):2566-2580. doi: 10.1364/BOE.452873. eCollection 2022 May 1.
In clinical routine, ophthalmologists frequently analyze the shape and size of the foveal avascular zone (FAZ) to detect and monitor retinal diseases. In order to extract those parameters, the contours of the FAZ need to be segmented, which is normally achieved by analyzing the retinal vasculature (RV) around the macula in fluorescein angiograms (FA). Computer-aided segmentation methods based on deep learning (DL) can automate this task. However, current approaches for segmenting the FAZ are often tailored to a specific dataset or require manual initialization. Furthermore, they do not take the variability and challenges of clinical FA into account, which are often of low quality and difficult to analyze. In this paper we propose a DL-based framework to automatically segment the FAZ in challenging FA scans from clinical routine. Our approach mimics the workflow of retinal experts by using additional RV labels as a guidance during training. Hence, our model is able to produce RV segmentations simultaneously. We minimize the annotation work by using a multi-modal approach that leverages already available public datasets of color fundus pictures (CFPs) and their respective manual RV labels. Our experimental evaluation on two datasets with FA from 1) clinical routine and 2) large multicenter clinical trials shows that the addition of weak RV labels as a guidance during training improves the FAZ segmentation significantly with respect to using only manual FAZ annotations.
在临床实践中,眼科医生经常分析黄斑无血管区(FAZ)的形状和大小,以检测和监测视网膜疾病。为了提取这些参数,需要对FAZ的轮廓进行分割,这通常是通过分析荧光素血管造影(FA)中黄斑周围的视网膜血管系统(RV)来实现的。基于深度学习(DL)的计算机辅助分割方法可以使这项任务自动化。然而,目前用于分割FAZ的方法通常是针对特定数据集定制的,或者需要手动初始化。此外,它们没有考虑临床FA的变异性和挑战性,临床FA往往质量较低且难以分析。在本文中,我们提出了一个基于DL的框架,用于在临床实践中具有挑战性的FA扫描中自动分割FAZ。我们的方法通过在训练期间使用额外的RV标签作为指导来模仿视网膜专家的工作流程。因此,我们的模型能够同时生成RV分割。我们使用一种多模态方法来最小化注释工作,该方法利用了已经可用的彩色眼底照片(CFP)公共数据集及其各自的手动RV标签。我们对来自1)临床实践和2)大型多中心临床试验的两个带有FA的数据集进行的实验评估表明,在训练期间添加弱RV标签作为指导相对于仅使用手动FAZ注释显著改善了FAZ分割。