Suppr超能文献

通过利用来自公共彩色眼底图片的手动血管标记来改善荧光血管造影中的黄斑无血管区分割。

Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures.

作者信息

Hofer Dominik, Schmidt-Erfurth Ursula, Orlando José Ignacio, Goldbach Felix, Gerendas Bianca S, Seeböck Philipp

机构信息

Vienna Reading Center, Department of Ophthalmology and Optometry, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.

Yatiris Group, PLADEMA Institute, CON-ICET, Universidad Nacional del Centro de la Provincia de Buenos Aires, Gral. Pinto 399, Tandil, Buenos Aires, Argentina.

出版信息

Biomed Opt Express. 2022 Apr 4;13(5):2566-2580. doi: 10.1364/BOE.452873. eCollection 2022 May 1.

Abstract

In clinical routine, ophthalmologists frequently analyze the shape and size of the foveal avascular zone (FAZ) to detect and monitor retinal diseases. In order to extract those parameters, the contours of the FAZ need to be segmented, which is normally achieved by analyzing the retinal vasculature (RV) around the macula in fluorescein angiograms (FA). Computer-aided segmentation methods based on deep learning (DL) can automate this task. However, current approaches for segmenting the FAZ are often tailored to a specific dataset or require manual initialization. Furthermore, they do not take the variability and challenges of clinical FA into account, which are often of low quality and difficult to analyze. In this paper we propose a DL-based framework to automatically segment the FAZ in challenging FA scans from clinical routine. Our approach mimics the workflow of retinal experts by using additional RV labels as a guidance during training. Hence, our model is able to produce RV segmentations simultaneously. We minimize the annotation work by using a multi-modal approach that leverages already available public datasets of color fundus pictures (CFPs) and their respective manual RV labels. Our experimental evaluation on two datasets with FA from 1) clinical routine and 2) large multicenter clinical trials shows that the addition of weak RV labels as a guidance during training improves the FAZ segmentation significantly with respect to using only manual FAZ annotations.

摘要

在临床实践中,眼科医生经常分析黄斑无血管区(FAZ)的形状和大小,以检测和监测视网膜疾病。为了提取这些参数,需要对FAZ的轮廓进行分割,这通常是通过分析荧光素血管造影(FA)中黄斑周围的视网膜血管系统(RV)来实现的。基于深度学习(DL)的计算机辅助分割方法可以使这项任务自动化。然而,目前用于分割FAZ的方法通常是针对特定数据集定制的,或者需要手动初始化。此外,它们没有考虑临床FA的变异性和挑战性,临床FA往往质量较低且难以分析。在本文中,我们提出了一个基于DL的框架,用于在临床实践中具有挑战性的FA扫描中自动分割FAZ。我们的方法通过在训练期间使用额外的RV标签作为指导来模仿视网膜专家的工作流程。因此,我们的模型能够同时生成RV分割。我们使用一种多模态方法来最小化注释工作,该方法利用了已经可用的彩色眼底照片(CFP)公共数据集及其各自的手动RV标签。我们对来自1)临床实践和2)大型多中心临床试验的两个带有FA的数据集进行的实验评估表明,在训练期间添加弱RV标签作为指导相对于仅使用手动FAZ注释显著改善了FAZ分割。

相似文献

1
Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures.
Biomed Opt Express. 2022 Apr 4;13(5):2566-2580. doi: 10.1364/BOE.452873. eCollection 2022 May 1.
2
Foveal avascular zone segmentation using deep learning-driven image-level optimization and fundus photographs.
Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230410. Epub 2023 Sep 1.
5
The association between the foveal avascular zone and retinal thickness.
Invest Ophthalmol Vis Sci. 2014 Sep 30;55(10):6870-7. doi: 10.1167/iovs.14-15446.
7
Automated segmentation of foveal avascular zone in fundus fluorescein angiography.
Invest Ophthalmol Vis Sci. 2010 Jul;51(7):3653-9. doi: 10.1167/iovs.09-4935. Epub 2010 Feb 3.
10
Multi-task Learning Based Ocular Disease Discrimination and FAZ Segmentation Utilizing OCTA Images.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2790-2793. doi: 10.1109/EMBC46164.2021.9631043.

本文引用的文献

1
Leveraging Regular Fundus Images for Training UWF Fundus Diagnosis Models via Adversarial Learning and Pseudo-Labeling.
IEEE Trans Med Imaging. 2021 Oct;40(10):2911-2925. doi: 10.1109/TMI.2021.3056395. Epub 2021 Sep 30.
2
A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification.
Med Image Anal. 2021 Feb;68:101905. doi: 10.1016/j.media.2020.101905. Epub 2020 Nov 17.
4
Triple Multi-scale Adversarial Learning with Self-attention and Quality Loss for Unpaired Fundus Fluorescein Angiography Synthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1592-1595. doi: 10.1109/EMBC44109.2020.9176302.
5
Weakly-Supervised Vessel Detection in Ultra-Widefield Fundus Photography via Iterative Multi-Modal Registration and Learning.
IEEE Trans Med Imaging. 2021 Oct;40(10):2748-2758. doi: 10.1109/TMI.2020.3027665. Epub 2021 Sep 30.
6
ELEMENT: Multi-Modal Retinal Vessel Segmentation Based on a Coupled Region Growing and Machine Learning Approach.
IEEE J Biomed Health Inform. 2020 Dec;24(12):3507-3519. doi: 10.1109/JBHI.2020.2999257. Epub 2020 Dec 4.
7
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
8
A Novel Deep Learning Pipeline for Retinal Vessel Detection In Fluorescein Angiography.
IEEE Trans Image Process. 2020 May 8. doi: 10.1109/TIP.2020.2991530.
9
UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation.
IEEE Trans Med Imaging. 2020 Jun;39(6):1856-1867. doi: 10.1109/TMI.2019.2959609. Epub 2019 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验