Suppr超能文献

一种用于荧光血管造影中视网膜血管检测的新型深度学习管道。

A Novel Deep Learning Pipeline for Retinal Vessel Detection In Fluorescein Angiography.

作者信息

Ding Li, Bawany Mohammad H, Kuriyan Ajay E, Ramchandran Rajeev S, Wykoff Charles C, Sharma Gaurav

出版信息

IEEE Trans Image Process. 2020 May 8. doi: 10.1109/TIP.2020.2991530.

Abstract

While recent advances in deep learning have significantly advanced the state of the art for vessel detection in color fundus (CF) images, the success for detecting vessels in fluorescein angiography (FA) has been stymied due to the lack of labeled ground truth datasets. We propose a novel pipeline to detect retinal vessels in FA images using deep neural networks (DNNs) that reduces the effort required for generating labeled ground truth data by combining two key components: cross-modality transfer and human-in-the-loop learning. The cross-modality transfer exploits concurrently captured CF and fundus FA images. Binary vessels maps are first detected from CF images with a pre-trained neural network and then are geometrically registered with and transferred to FA images via robust parametric chamfer alignment to a preliminary FA vessel detection obtained with an unsupervised technique. Using the transferred vessels as initial ground truth labels for deep learning, the human-in-the-loop approach progressively improves the quality of the ground truth labeling by iterating between deep-learning and labeling. The approach significantly reduces manual labeling effort while increasing engagement. We highlight several important considerations for the proposed methodology and validate the performance on three datasets. Experimental results demonstrate that the proposed pipeline significantly reduces the annotation effort and the resulting deep learning methods outperform prior existing FA vessel detection methods by a significant margin. A new public dataset, RECOVERY-FA19, is introduced that includes high-resolution ultra-widefield images and accurately labeled ground truth binary vessel maps.

摘要

虽然深度学习的最新进展显著提升了彩色眼底(CF)图像中血管检测的技术水平,但由于缺乏标注的地面真值数据集,荧光素血管造影(FA)图像中血管检测的进展受到了阻碍。我们提出了一种新颖的管道,使用深度神经网络(DNN)来检测FA图像中的视网膜血管,该管道通过结合两个关键组件减少了生成标注地面真值数据所需的工作量:跨模态转移和人工参与学习。跨模态转移利用同时捕获的CF和眼底FA图像。首先使用预训练的神经网络从CF图像中检测出二值血管图,然后通过鲁棒的参数化倒角对齐将其与通过无监督技术获得的初步FA血管检测结果进行几何配准并转移到FA图像上。将转移后的血管作为深度学习的初始地面真值标签,人工参与方法通过在深度学习和标注之间迭代逐步提高地面真值标注的质量。该方法显著减少了人工标注工作量,同时提高了参与度。我们强调了所提出方法的几个重要注意事项,并在三个数据集上验证了性能。实验结果表明,所提出的管道显著减少了标注工作量,并且由此产生的深度学习方法在很大程度上优于现有的FA血管检测方法。我们引入了一个新的公共数据集RECOVERY - FA19,其中包括高分辨率超广角图像和准确标注的地面真值二值血管图。

相似文献

1
A Novel Deep Learning Pipeline for Retinal Vessel Detection In Fluorescein Angiography.
IEEE Trans Image Process. 2020 May 8. doi: 10.1109/TIP.2020.2991530.
2
Weakly-Supervised Vessel Detection in Ultra-Widefield Fundus Photography via Iterative Multi-Modal Registration and Learning.
IEEE Trans Med Imaging. 2021 Oct;40(10):2748-2758. doi: 10.1109/TMI.2020.3027665. Epub 2021 Sep 30.
3
Combining Feature Correspondence With Parametric Chamfer Alignment: Hybrid Two-Stage Registration for Ultra-Widefield Retinal Images.
IEEE Trans Biomed Eng. 2023 Feb;70(2):523-532. doi: 10.1109/TBME.2022.3196458. Epub 2023 Jan 19.
6
Synergizing Deep Learning-Enabled Preprocessing and Human-AI Integration for Efficient Automatic Ground Truth Generation.
Bioengineering (Basel). 2024 Apr 28;11(5):434. doi: 10.3390/bioengineering11050434.
9
MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
J Digit Imaging. 2018 Aug;31(4):513-519. doi: 10.1007/s10278-018-0053-3.

引用本文的文献

1
BAOS-CNN: A novel deep neuroevolution algorithm for multispecies seagrass detection.
PLoS One. 2024 Jun 25;19(6):e0281568. doi: 10.1371/journal.pone.0281568. eCollection 2024.
2
Controllable editing via diffusion inversion on ultra-widefield fluorescein angiography for the comprehensive analysis of diabetic retinopathy.
Biomed Opt Express. 2024 Feb 23;15(3):1831-1846. doi: 10.1364/BOE.517819. eCollection 2024 Mar 1.
3
Cross-modality Labeling Enables Noninvasive Capillary Quantification as a Sensitive Biomarker for Assessing Cardiovascular Risk.
Ophthalmol Sci. 2023 Dec 5;4(3):100441. doi: 10.1016/j.xops.2023.100441. eCollection 2024 May-Jun.
4
Automatic Detection of 30 Fundus Diseases Using Ultra-Widefield Fluorescein Angiography with Deep Experts Aggregation.
Ophthalmol Ther. 2024 May;13(5):1125-1144. doi: 10.1007/s40123-024-00900-7. Epub 2024 Feb 28.
6
Applications of Deep Learning: Automated Assessment of Vascular Tortuosity in Mouse Models of Oxygen-Induced Retinopathy.
Ophthalmol Sci. 2023 May 25;4(1):100338. doi: 10.1016/j.xops.2023.100338. eCollection 2024 Jan-Feb.
7
One-shot Retinal Artery and Vein Segmentation via Cross-modality Pretraining.
Ophthalmol Sci. 2023 Jul 6;4(2):100363. doi: 10.1016/j.xops.2023.100363. eCollection 2024 Mar-Apr.
8
An artificial intelligence system for the whole process from diagnosis to treatment suggestion of ischemic retinal diseases.
Cell Rep Med. 2023 Oct 17;4(10):101197. doi: 10.1016/j.xcrm.2023.101197. Epub 2023 Sep 20.
10
Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures.
Biomed Opt Express. 2022 Apr 4;13(5):2566-2580. doi: 10.1364/BOE.452873. eCollection 2022 May 1.

本文引用的文献

1
Automated vessel density detection in fluorescein angiography images correlates with vision in proliferative diabetic retinopathy.
PLoS One. 2020 Sep 11;15(9):e0238958. doi: 10.1371/journal.pone.0238958. eCollection 2020.
2
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
3
Deep vessel segmentation by learning graphical connectivity.
Med Image Anal. 2019 Dec;58:101556. doi: 10.1016/j.media.2019.101556. Epub 2019 Sep 6.
4
Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning.
Nat Biomed Eng. 2018 Mar;2(3):158-164. doi: 10.1038/s41551-018-0195-0. Epub 2018 Feb 19.
5
A Hierarchical Image Matting Model for Blood Vessel Segmentation in Fundus Images.
IEEE Trans Image Process. 2018 Dec 17. doi: 10.1109/TIP.2018.2885495.
6
Impact of Diabetes Mellitus on Human Erythrocytes: Atomic Force Microscopy and Spectral Investigations.
Int J Environ Res Public Health. 2018 Oct 26;15(11):2368. doi: 10.3390/ijerph15112368.
8
A Three-Stage Deep Learning Model for Accurate Retinal Vessel Segmentation.
IEEE J Biomed Health Inform. 2019 Jul;23(4):1427-1436. doi: 10.1109/JBHI.2018.2872813. Epub 2018 Sep 28.
10
Joint Segment-Level and Pixel-Wise Losses for Deep Learning Based Retinal Vessel Segmentation.
IEEE Trans Biomed Eng. 2018 Sep;65(9):1912-1923. doi: 10.1109/TBME.2018.2828137. Epub 2018 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验