Suppr超能文献

一种基于自发荧光光谱成像结合机器学习算法识别大豆种子成熟阶段的可靠方法。

A Reliable Method to Recognize Soybean Seed Maturation Stages Based on Autofluorescence-Spectral Imaging Combined With Machine Learning Algorithms.

作者信息

Batista Thiago Barbosa, Mastrangelo Clíssia Barboza, de Medeiros André Dantas, Petronilio Ana Carolina Picinini, Fonseca de Oliveira Gustavo Roberto, Dos Santos Isabela Lopes, Crusciol Carlos Alexandre Costa, Amaral da Silva Edvaldo Aparecido

机构信息

Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil.

Laboratory of Radiobiology and Environment, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil.

出版信息

Front Plant Sci. 2022 Jun 14;13:914287. doi: 10.3389/fpls.2022.914287. eCollection 2022.

Abstract

In recent years, technological innovations have allowed significant advances in the diagnosis of seed quality. Seeds with superior physiological quality are those with the highest level of physiological maturity and the integration of rapid and precise methods to separate them contributes to better performance in the field. Autofluorescence-spectral imaging is an innovative technique based on fluorescence signals from fluorophores present in seed tissues, which have biological implications for seed quality. Thus, through this technique, it would be possible to classify seeds in different maturation stages. To test this, we produced plants of a commercial cultivar (MG/BR 46 "Conquista") and collected the seeds at five reproductive (R) stages: R7.1 (beginning of maturity), R7.2 (mass maturity), R7.3 (seed disconnected from the mother plant), R8 (harvest point), and R9 (final maturity). Autofluorescence signals were extracted from images captured at different excitation/emission combinations. In parallel, we investigated physical parameters, germination, vigor and the dynamics of pigments in seeds from different maturation stages. To verify the accuracy in predicting the seed maturation stages based on autofluorescence-spectral imaging, we created machine learning models based on three algorithms: (i) random forest, (ii) neural network, and (iii) support vector machine. Here, we reported the unprecedented use of the autofluorescence-spectral technique to classify the maturation stages of soybean seeds, especially using the excitation/emission combination of chlorophyll (660/700 nm) and (405/600 nm). Taken together, the machine learning algorithms showed high performance segmenting the different stages of seed maturation. In summary, our results demonstrated that the maturation stages of soybean seeds have their autofluorescence-spectral identity in the wavelengths of chlorophylls, which allows the use of this technique as a marker of seed maturity and superior physiological quality.

摘要

近年来,技术创新使种子质量诊断取得了重大进展。生理质量优良的种子是那些具有最高生理成熟水平的种子,采用快速精确的方法对其进行甄别,有助于在田间获得更好的表现。自体荧光光谱成像技术是一项基于种子组织中荧光团发出的荧光信号的创新技术,这些荧光信号对种子质量具有生物学意义。因此,通过这项技术,可以对处于不同成熟阶段的种子进行分类。为了验证这一点,我们培育了一个商业品种(MG/BR 46 “Conquista”)的植株,并在五个生殖(R)阶段收集种子:R7.1(成熟初期)、R7.2(大量成熟)、R7.3(种子与母株分离)、R8(收获点)和R9(最终成熟)。从在不同激发/发射组合下拍摄的图像中提取自体荧光信号。同时,我们研究了不同成熟阶段种子的物理参数、发芽率、活力以及色素动态变化。为了验证基于自体荧光光谱成像预测种子成熟阶段的准确性,我们基于三种算法创建了机器学习模型:(i)随机森林算法、(ii)神经网络算法和(iii)支持向量机算法。在此,我们报道了前所未有的利用自体荧光光谱技术对大豆种子成熟阶段进行分类,特别是使用叶绿素(660/700 nm)和(405/600 nm)的激发/发射组合。总体而言,机器学习算法在区分种子成熟的不同阶段方面表现出高性能。总之,我们的结果表明,大豆种子的成熟阶段在叶绿素波长上具有自体荧光光谱特征,这使得该技术可作为种子成熟度和优良生理质量的标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/490b/9237540/b2ba8cc0061b/fpls-13-914287-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验