Bianchini Vitor de Jesus Martins, Mascarin Gabriel Moura, Silva Lúcia Cristina Aparecida Santos, Arthur Valter, Carstensen Jens Michael, Boelt Birte, Barboza da Silva Clíssia
Department of Crop Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, 11 Padua Dias Ave, Box 9, Piracicaba, SP, 13418-900, Brazil.
Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation, Embrapa Environment, Rodovia SP 340, Km 127.5, Jaguariúna, 13820-000, Brazil.
Plant Methods. 2021 Jan 26;17(1):9. doi: 10.1186/s13007-021-00709-6.
The use of non-destructive methods with less human interference is of great interest in agricultural industry and crop breeding. Modern imaging technologies enable the automatic visualization of multi-parameter for characterization of biological samples, reducing subjectivity and optimizing the analysis process. Furthermore, the combination of two or more imaging techniques has contributed to discovering new physicochemical tools and interpreting datasets in real time.
We present a new method for automatic characterization of seed quality based on the combination of multispectral and X-ray imaging technologies. We proposed an approach using X-ray images to investigate internal tissues because seed surface profile can be negatively affected, but without reaching important internal regions of seeds. An oilseed plant (Jatropha curcas) was used as a model species, which also serves as a multi-purposed crop of economic importance worldwide. Our studies included the application of a normalized canonical discriminant analyses (nCDA) algorithm as a supervised transformation building method to obtain spatial and spectral patterns on different seedlots. We developed classification models using reflectance data and X-ray classes based on linear discriminant analysis (LDA). The classification models, individually or combined, showed high accuracy (> 0.96) using reflectance at 940 nm and X-ray data to predict quality traits such as normal seedlings, abnormal seedlings and dead seeds.
Multispectral and X-ray imaging have a strong relationship with seed physiological performance. Reflectance at 940 nm and X-ray data can efficiently predict seed quality attributes. These techniques can be alternative methods for rapid, efficient, sustainable and non-destructive characterization of seed quality in the future, overcoming the intrinsic subjectivity of the conventional seed quality analysis.
在农业和作物育种中,采用人工干预较少的无损检测方法备受关注。现代成像技术能够自动可视化生物样本的多参数特征,减少主观性并优化分析过程。此外,两种或更多成像技术的结合有助于发现新的物理化学工具并实时解读数据集。
我们提出了一种基于多光谱和X射线成像技术结合的种子质量自动表征新方法。我们提出一种利用X射线图像研究内部组织的方法,因为种子表面轮廓可能受到负面影响,但不会影响种子的重要内部区域。一种油料作物(麻疯树)被用作模式物种,它也是全球具有重要经济意义的多用途作物。我们的研究包括应用归一化典型判别分析(nCDA)算法作为一种监督变换构建方法,以获取不同种子批次的空间和光谱模式。我们基于线性判别分析(LDA),利用反射率数据和X射线类别开发了分类模型。这些分类模型单独或组合使用时,利用940nm处的反射率和X射线数据预测正常幼苗、异常幼苗和死种子等质量性状,显示出较高的准确率(>0.96)。
多光谱和X射线成像与种子生理性能密切相关。940nm处的反射率和X射线数据能够有效预测种子质量属性。这些技术未来可成为快速、高效、可持续且无损表征种子质量的替代方法,克服传统种子质量分析中固有的主观性。