Department of Biotechnology & Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074, Würzburg, Germany.
Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom.
Sci Rep. 2017 Dec 1;7(1):16789. doi: 10.1038/s41598-017-16881-6.
Web spiders synthesize silk fibres, nature's toughest biomaterial, through the controlled assembly of fibroin proteins, so-called spidroins. The highly conserved spidroin N-terminal domain (NTD) is a pH-driven self-assembly device that connects spidroins to super-molecules in fibres. The degree to which forces of self-assembly is conserved across spider glands and species is currently unknown because quantitative measures are missing. Here, we report the comparative investigation of spidroin NTDs originating from the major ampullate glands of the spider species Euprosthenops australis, Nephila clavipes, Latrodectus hesperus, and Latrodectus geometricus. We characterized equilibrium thermodynamics and kinetics of folding and self-association using dynamic light scattering, stopped-flow fluorescence and circular dichroism spectroscopy in combination with thermal and chemical denaturation experiments. We found cooperative two-state folding on a sub-millisecond time scale through a late transition state of all four domains. Stability was compromised by repulsive electrostatic forces originating from clustering of point charges on the NTD surface required for function. pH-driven dimerization proceeded with characteristic fast kinetics yielding high affinities. Results showed that energetics and kinetics of NTD self-assembly are highly conserved across spider species despite the different silk mechanical properties and web geometries they produce.
蜘蛛通过丝蛋白(即所谓的蜘蛛丝蛋白)的受控组装来合成丝纤维,这是自然界中最坚韧的生物材料。高度保守的蜘蛛丝蛋白 N 端结构域(NTD)是一个 pH 驱动的自组装装置,它将蜘蛛丝蛋白连接到纤维中的超分子上。目前,由于缺乏定量测量,蜘蛛腺和物种之间的自组装力的保守程度尚不清楚。在这里,我们报告了对来自蜘蛛物种 Euprosthenops australis、Nephila clavipes、Latrodectus hesperus 和 Latrodectus geometricus 的主要壶腹腺的蜘蛛丝蛋白 NTD 的比较研究。我们使用动态光散射、停流荧光和圆二色性光谱结合热和化学变性实验,对折叠和自组装的平衡热力学和动力学进行了表征。我们发现所有四个结构域都通过一个晚期过渡态在亚毫秒时间尺度上进行协同的两态折叠。稳定性受到功能所需的 NTD 表面点电荷聚集产生的排斥静电的影响。pH 驱动的二聚化以特征性的快速动力学进行,产生高亲和力。结果表明,尽管它们产生的丝绸机械性能和网眼结构不同,但蜘蛛物种之间的 NTD 自组装的能量学和动力学具有高度的保守性。