Suppr超能文献

自动测定黑质高 R 区容积:定量研究进行性核上性麻痹黑质萎缩的可行性。

Automated volumetric determination of high R regions in substantia nigra: A feasibility study of quantifying substantia nigra atrophy in progressive supranuclear palsy.

机构信息

Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea.

School of Biomedical Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia.

出版信息

NMR Biomed. 2022 Nov;35(11):e4795. doi: 10.1002/nbm.4795. Epub 2022 Jul 24.

Abstract

The establishment of an unbiased protocol for the automated volumetric measurement of iron-rich regions in the substantia nigra (SN) is clinically important for diagnosing neurodegenerative diseases exhibiting midbrain atrophy, such as progressive supranuclear palsy (PSP). This study aimed to automatically quantify the volume and surface properties of the iron-rich 3D regions in the SN using the quantitative MRI-R map. Three hundred and sixty-seven slices of R map and susceptibility-weighted imaging (SWI) at 3-T MRI from healthy control (HC) individuals and Parkinson's disease (PD) patients were used to train customized U-net++ convolutional neural network based on expert-segmented masks. Age- and sex-matched participants were selected from HC, PD, and PSP groups to automate the volumetric determination of iron-rich areas in the SN. Dice similarity coefficient values between expert-segmented and detected masks from the proposed network were for R maps and for SWI. Reductions in iron-rich SN volume from the R map (SWI) were observed in PSP with area under the receiver operating characteristic curve values of 0.96 (0.89) and 0.98 (0.92) compared with HC and PD, respectively. The mean curvature of the PSP showed SN deformation along the side closer to the red nucleus. We demonstrated the automated volumetric measurement of iron-rich regions in the SN using deep learning can quantify the SN atrophy in PSP compared with PD and HC.

摘要

建立一个公正的协议,用于自动测量铁丰富区域的体积,对于诊断表现为中脑萎缩的神经退行性疾病,如进行性核上性麻痹(PSP)具有重要的临床意义。本研究旨在使用定量 MRI-R 图自动量化 SN 中富含铁的 3D 区域的体积和表面特性。从健康对照组(HC)个体和帕金森病(PD)患者的 3-T MRI 中获得了 367 张 R 图和磁化率加权成像(SWI),用于基于专家分割掩模训练定制的 U-net++卷积神经网络。从 HC、PD 和 PSP 组中选择年龄和性别匹配的参与者,以自动确定 SN 中富含铁的区域的体积。从所提出的网络中专家分割和检测掩模之间的 Dice 相似系数值分别为 R 图和 SWI。与 HC 和 PD 相比,PSP 中从 R 图(SWI)观察到富含铁的 SN 体积减少,其受试者工作特征曲线下面积分别为 0.96(0.89)和 0.98(0.92)。PSP 的平均曲率显示 SN 沿着靠近红核的一侧变形。我们使用深度学习演示了 SN 中富含铁区域的自动体积测量,与 PD 和 HC 相比,可量化 PSP 中的 SN 萎缩。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验