Opt Lett. 2022 Jul 1;47(13):3183-3186. doi: 10.1364/OL.454871.
In this work, we aim to study numerically the emission decay rate of a hybrid system combining a quantum emitter (QE) and an epsilon-near-zero (ENZ) spherical nanoparticle (SNP). Inspired by the peculiar behavior of ENZ materials and their high potential in developing unusual abilities in controlling the emission properties of QE. More specifically the control of fluorescence inhibition, or the amplification of the lifetime of the excited state. This can naturally find applications in quantum information storage for optical quantum memories based on light-atom interaction which naturally benefit from storage time control. We demonstrate that the key process in limiting fluorescence inhibition is the competition between inhibition of fluorescence from the radiative processes and energy dissipation due to the non-radiative channels. Furthermore, we illustrate that this balance can be shifted to optimize inhibition as function of the QE position. The optimization happens via SNP size control, material composition, and λ of the SNP. This detailed study introduces and paves the way for new research directions on the manipulation and optimization of QE properties in the vicinity of ENZ materials.
在这项工作中,我们旨在通过数值方法研究结合量子发射器(QE)和近零折射率(ENZ)球形纳米粒子(SNP)的混合系统的发射衰减率。受到 ENZ 材料特殊行为及其在开发控制 QE 发射特性的异常能力方面的巨大潜力的启发。更具体地说,控制荧光抑制,或延长激发态的寿命。这自然可以在基于光与原子相互作用的光学量子存储中找到应用,该系统自然受益于存储时间控制。我们证明了限制荧光抑制的关键过程是辐射过程抑制荧光和非辐射通道引起的能量耗散之间的竞争。此外,我们说明,通过控制 SNP 的大小、材料成分和 λ,可以改变这种平衡,以优化作为 QE 位置函数的抑制效果。这种详细的研究为在 ENZ 材料附近操纵和优化 QE 性质的新研究方向提供了思路和方法。