Suppr超能文献

植物预测矿物矿——利用指示植物物种发现采矿点的方法学方法。

Plants predict the mineral mines - A methodological approach to use indicator plant species for the discovery of mining sites.

机构信息

Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan.

Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan.

出版信息

J Adv Res. 2022 Jul;39:119-133. doi: 10.1016/j.jare.2021.10.005. Epub 2021 Oct 18.

Abstract

INTRODUCTION

There has been limited research conducted on the identifications/methodological approaches of using plant species as indicators of the presence of economically, important mineral resources.

OBJECTIVES

This study set out to answer the following questions (1) Do specific plant species and species assemblages indicate the presence of mineral deposits? and (2) if yes, then what sort of ecological, experimental, and statistical procedures could be employed to identify such indicators?

METHODS

Keeping in mind these questions, the vegetation of subtropical mineral mines sites in northern Pakistan were evaluated using Indicator Species Analysis (ISA), Canonical Correspondence Analysis (CCA) and Structural Equation Modeling (SEM).

RESULTS

A total of 105 plant species belonging to 95 genera and 43 families were recorded from the three mining regions. CA and TWCA classified all the stations and plants into three major mining zones, corresponding to the presence of marble, coal, and chromite, based on Jaccard distance and Ward's linkage methods. This comprehended the following indicator species: Ficuscarica, Isodonrugosus and Ajugaparviflora (marble indicators); Oleaferruginea, Gymnosporiaroyleana and Diclipterabupleuroides (coal indicators); and Acacianilotica, Rhazyastricta and Aristidaadscensionis (chromite indicators) based on calculated Indicator Values (IV). These indicators were reconfirmed by CCA and SEM analysis.

CONCLUSION

It was concluded that ISA is one of the best techniques for the identification/selection of plant indicator species, followed by reconfirmation via CCA and SEM analysis. In addition to establishing a robust approach to identifying plant indicator species, our results could have application in mineral prospecting and detection.

摘要

简介

关于利用植物物种作为经济上重要矿产资源存在的指示物的鉴定/方法方法学研究有限。

目的

本研究旨在回答以下问题:(1) 特定的植物物种和物种组合是否指示矿床的存在?(2) 如果是,那么可以采用哪些生态、实验和统计程序来识别这些指示物?

方法

考虑到这些问题,利用指示种分析(ISA)、典范对应分析(CCA)和结构方程模型(SEM)评估了巴基斯坦北部亚热带矿产矿区的植被。

结果

从三个矿区共记录了 105 种植物,隶属于 95 属和 43 科。CA 和 TWCA 根据 Jaccard 距离和 Ward 连接方法,将所有站点和植物分为三个主要矿区,对应大理石、煤和铬铁矿的存在。这包括以下指示种:Ficuscarica、Isodonrugosus 和 Ajugaparviflora(大理石指示种);Oleaferruginea、Gymnosporiaroyleana 和 Diclipterabupleuroides(煤指示种);和 Acacianilotica、Rhazyastricta 和 Aristidaadscensionis(铬铁矿指示种),基于计算出的指示值(IV)。CCA 和 SEM 分析再次证实了这些指示物。

结论

结论是,ISA 是鉴定/选择植物指示种的最佳技术之一,其次是通过 CCA 和 SEM 分析再次确认。除了建立识别植物指示种的稳健方法外,我们的结果还可以应用于矿产勘探和检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d16/9263987/1ad2e49c0d72/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验