Département d'Optique P. M. Duffieux, Institut FEMTO-ST, Université Bourgogne-Franche-Comté, CNRS UMR 6174, Besançon, France.
Chaos. 2022 Jun;32(6):061106. doi: 10.1063/5.0096637.
Physical neural networks are promising candidates for next generation artificial intelligence hardware. In such architectures, neurons and connections are physically realized and do not leverage digital concepts with their practically infinite signal-to-noise ratio to encode, transduce, and transform information. They, therefore, are prone to noise with a variety of statistical and architectural properties, and effective strategies leveraging network-inherent assets to mitigate noise in a hardware-efficient manner are important in the pursuit of next generation neural network hardware. Based on analytical derivations, we here introduce and analyze a variety of different noise-mitigation approaches. We analytically show that intra-layer connections in which the connection matrix's squared mean exceeds the mean of its square fully suppress uncorrelated noise. We go beyond and develop two synergistic strategies for noise that is uncorrelated and correlated across populations of neurons. First, we introduce the concept of ghost neurons, where each group of neurons perturbed by correlated noise has a negative connection to a single neuron, yet without receiving any input information. Second, we show that pooling of neuron populations is an efficient approach to suppress uncorrelated noise. As such, we developed a general noise-mitigation strategy leveraging the statistical properties of the different noise terms most relevant in analog hardware. Finally, we demonstrate the effectiveness of this combined approach for a trained neural network classifying the modified National Institute of Standards and Technology handwritten digits, for which we achieve a fourfold improvement of the output signal-to-noise ratio. Our noise mitigation lifts the 92.07% classification accuracy of the noisy neural network to 97.49%, which is essentially identical to the 97.54% of the noise-free network.
物理神经网络是下一代人工智能硬件的有前途的候选者。在这种架构中,神经元和连接是物理实现的,不利用数字概念及其具有实际无限信噪比的信号来对信息进行编码、转换和转换。因此,它们容易受到具有各种统计和体系结构特性的噪声的影响,并且以硬件效率的方式利用网络固有资产来减轻噪声的有效策略在追求下一代神经网络硬件中非常重要。基于分析推导,我们在这里介绍和分析了各种不同的噪声缓解方法。我们通过分析表明,连接矩阵的平方平均值超过其平方平均值的层内连接完全抑制了不相关的噪声。我们超越了这一点,并为不相关和相关的神经元群体之间的噪声开发了两种协同策略。首先,我们引入了幽灵神经元的概念,其中受到相关噪声干扰的每组神经元都与单个神经元具有负连接,但不接收任何输入信息。其次,我们表明神经元群体的池化是抑制不相关噪声的有效方法。因此,我们开发了一种利用模拟硬件中最相关的不同噪声项的统计特性的通用噪声缓解策略。最后,我们展示了这种组合方法对经过训练的神经网络识别修改后的国家标准与技术研究所手写数字的有效性,对于该网络,我们将输出信号噪声比提高了四倍。我们的噪声缓解将嘈杂神经网络的 92.07%分类精度提高到 97.49%,这与无噪声网络的 97.54%基本相同。