Suppr超能文献

使用活体弥散磁共振成像进行大脑皮层层分割及其在层间连接和工作记忆分析中的应用。

Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connections and working memory analysis.

机构信息

College of Artificial Intelligence, Nankai University, Tianjin, China.

Computational Engineering Applications Unit, Head Office for Information Systems and Cybersecurity, RIKEN, Saitama, Japan.

出版信息

Hum Brain Mapp. 2022 Dec 1;43(17):5220-5234. doi: 10.1002/hbm.25998. Epub 2022 Jul 1.

Abstract

Understanding the laminar brain structure is of great help in further developing our knowledge of the functions of the brain. However, since most layer segmentation methods are invasive, it is difficult to apply them to the human brain in vivo. To systematically explore the human brain's laminar structure noninvasively, the K-means clustering algorithm was used to automatically segment the left hemisphere into two layers, the superficial and deep layers, using a 7 Tesla (T) diffusion magnetic resonance imaging (dMRI)open dataset. The obtained layer thickness was then compared with the layer thickness of the BigBrain reference dataset, which segmented the neocortex into six layers based on the von Economo atlas. The results show a significant correlation not only between our automatically segmented superficial layer thickness and the thickness of layers 1-3 from the reference histological data, but also between our automatically segmented deep layer thickness and the thickness of layers 4-6 from the reference histological data. Second, we constructed the laminar connections between two pairs of unidirectional connected regions, which is consistent with prior research. Finally, we conducted the laminar analysis of the working memory, which was challenging to do in the past, and explained the conclusions of the functional analysis. Our work successfully demonstrates that it is possible to segment the human cortex noninvasively into layers using dMRI data and further explores the mechanisms of the human brain.

摘要

理解层状脑结构对于进一步了解大脑功能有很大帮助。然而,由于大多数层分割方法具有侵入性,因此很难将其应用于人体大脑的活体研究中。为了系统地探索人类大脑的非侵入性层状结构,我们使用 K-均值聚类算法对 7T 弥散磁共振成像(dMRI)开放数据集的左半球进行了自动分割,分为浅层和深层两层。然后,将获得的层厚与基于 von Economo 图谱将新皮层分为六层的 BigBrain 参考数据集的层厚进行比较。结果表明,我们自动分割的浅层厚度与参考组织学数据中 1-3 层的厚度之间不仅存在显著相关性,而且我们自动分割的深层厚度与参考组织学数据中 4-6 层的厚度之间也存在显著相关性。其次,我们构建了两对单向连接区域之间的层连接,这与先前的研究一致。最后,我们对工作记忆进行了层分析,这在过去是具有挑战性的,并且解释了功能分析的结论。我们的工作成功地证明了使用 dMRI 数据对人类大脑皮层进行非侵入性分层分割是可行的,并进一步探索了人类大脑的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ecd/9812233/592670794eaf/HBM-43-5220-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验