Suppr超能文献

具有六边形有序锥形大孔的工程化碳纳米片作为高性能钠离子电池阳极

Engineering carbon nanosheets with hexagonal ordered conical macropores as high-performance sodium-ion battery anodes.

作者信息

Cheng Dejian, Cheng Ao, Zhong Weihao, Zhang Minglu, Qiu Guojian, Miao Lei, Li Zhenghui, Zhang Haiyan

机构信息

School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.

School of Materials Science and Hydrogen Energy, Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, 528000, China.

出版信息

J Colloid Interface Sci. 2022 Nov;625:978-989. doi: 10.1016/j.jcis.2022.06.064. Epub 2022 Jun 24.

Abstract

As one of the most promising candidates for sodium-ion battery anodes, hard carbons suffer from inferior rate performance owing to limited ion transfer rate and sluggish electrochemical kinetics. In this work, novel carbon nanosheets (CNS) with hexagonal ordered conical macropores are prepared. The CNS has a very thin thickness of approximately 370 nm, and the conical pores are penetrated through the whole nanosheet, forming well-connected ion transport freeway. In addition, the carbon microcrystal structure and interlayer spacing can be well tailored by adjusting the carbonization temperature, thereby controlling the sodium storage behavior of carbon electrodes. These structural merits endow CNS with accelerated ion transfer, minimized ion diffusion distance and fast electrochemical kinetics. Consequently, the CNS presents superior electrochemical performance. It delivers a high reversible capacity of 298 mAh g at 0.1 A g; and after repeated charge/discharge for 500 times at 1 A g, its capacity remains 195 mA h g, with no rapid capacity loss. More importantly, CNS exhibits outstanding rate capability. Even under a very high current density of 2 A g, it still displays a large capacity of 210 mAh g, higher than most of state-of-the-art carbon anodes.

摘要

作为钠离子电池负极最有前景的候选材料之一,硬碳由于离子传输速率有限和电化学动力学迟缓,倍率性能较差。在这项工作中,制备了具有六边形有序锥形大孔的新型碳纳米片(CNS)。CNS的厚度非常薄,约为370nm,锥形孔贯穿整个纳米片,形成了连通良好的离子传输通道。此外,通过调节碳化温度可以很好地调整碳微晶结构和层间距,从而控制碳电极的储钠行为。这些结构优点使CNS具有加速的离子传输、最小化的离子扩散距离和快速的电化学动力学。因此,CNS呈现出优异的电化学性能。在0.1A g下,它具有298mAh g的高可逆容量;在1A g下反复充放电500次后,其容量仍保持在195mAh g,没有快速的容量损失。更重要的是,CNS表现出出色的倍率性能。即使在2A g的非常高电流密度下,它仍然显示出210mAh g的大容量,高于大多数先进的碳负极。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验