Amate Rutuja U, Morankar Pritam J, Bhosale Mrunal K, Teli Aviraj M, Beknalkar Sonali A, Jeon Chan-Wook
School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 712-749, Republic of Korea.
Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
Materials (Basel). 2025 Jun 19;18(12):2916. doi: 10.3390/ma18122916.
In this work, we report a facile and tunable electrodeposition approach for engineering polyacrylic acid (PAA)-modified CoO electrodes on nickel foam for high-performance asymmetric pouch-type supercapacitors. By systematically varying the PAA concentration (0.5 wt %, 1 wt %, and 1.5 wt %), we demonstrate that the CO-1 sample (1 wt % PAA) exhibited the most optimized structure and electrochemical behavior. The CO-1 electrode delivered a remarkable areal capacitance of 3467 mF/cm at 30 mA/cm, attributed to its interconnected nanosheet morphology, enhanced ion diffusion, and reversible Co/Co/Co redox transitions. Electrochemical impedance spectroscopy confirmed low internal resistance (0.4267 Ω), while kinetic analysis revealed a dominant diffusion-controlled charge storage contribution of 91.7%. To evaluate practical applicability, an asymmetric pouch-type supercapacitor device was assembled using CO-1 as the positive electrode and activated carbon as the negative electrode. The device operated efficiently within a 1.6 V window, achieving an impressive areal capacitance of 157 mF/cm, an energy density of 0.056 mWh/cm, a power density of 1.9 mW/cm, and excellent cycling stability. This study underscores the critical role of polymer-assisted growth in tailoring electrode architecture and provides a promising route for integrating cost-effective and scalable supercapacitor devices into next-generation energy storage technologies.
在这项工作中,我们报道了一种简便且可调节的电沉积方法,用于在泡沫镍上制备用于高性能非对称软包型超级电容器的聚丙烯酸(PAA)修饰的CoO电极。通过系统地改变PAA浓度(0.5 wt%、1 wt%和1.5 wt%),我们证明CO-1样品(1 wt% PAA)表现出最优化的结构和电化学行为。CO-1电极在30 mA/cm下展现出3467 mF/cm的显著面积电容,这归因于其相互连接的纳米片形态、增强的离子扩散以及可逆的Co/Co/Co氧化还原转变。电化学阻抗谱证实其具有低内阻(0.4267 Ω),而动力学分析表明扩散控制的电荷存储贡献占主导,为91.7%。为了评估实际适用性,使用CO-1作为正极和活性炭作为负极组装了一个非对称软包型超级电容器装置。该装置在1.6 V的电压窗口内高效运行,实现了令人印象深刻的157 mF/cm的面积电容、0.056 mWh/cm的能量密度、1.9 mW/cm的功率密度以及出色的循环稳定性。这项研究强调了聚合物辅助生长在定制电极结构中的关键作用,并为将具有成本效益且可扩展的超级电容器装置集成到下一代储能技术中提供了一条有前景的途径。