Department of Environment and Geography, University of York, Heslington, York YO10 5NG, UK; UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB, UK; MO-ECO(2) (Modelling and data analyses for ecology and ecotoxicology), Paris, France.
UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB, UK; Cardiff School of Biosciences, BIOSI 1, University of Cardiff, P.O. Box 915, Cardiff CF10 3TL, UK.
Sci Total Environ. 2022 Oct 15;843:157048. doi: 10.1016/j.scitotenv.2022.157048. Epub 2022 Jun 30.
The assessment of chemical mixture toxicity is one of the major challenges in ecotoxicology. Chemicals can interact, leading to more or less effects than expected, commonly named synergism and antagonism respectively. The classic ad hoc approach for the assessment of mixture effects is based on dose-response curves at a single time point, and is limited to identifying a mixture interaction but cannot provide predictions for untested exposure durations, nor for scenarios where exposure varies in time. We here propose a new approach using toxicokinetic-toxicodynamic modelling: The General Unified Threshold model of Survival (GUTS) framework, recently extended for mixture toxicity assessment. We designed a dedicated mechanistic interaction module coupled with the GUTS mixture model to i) identify interactions, ii) test hypotheses to identify which chemical is likely responsible for the interaction, and finally iii) simulate and predict the effect of synergistic and antagonistic mixtures. We tested the modelling approach experimentally with two species (Enchytraeus crypticus and Mamestra brassicae) exposed to different potentially synergistic mixtures (composed of: prochloraz, imidacloprid, cypermethrin, azoxystrobin, chlorothalonil, and chlorpyrifos). Furthermore, we also tested the model with previously published experimental data on two other species (Bombus terrestris and Daphnia magna) exposed to pesticide mixtures (clothianidin, propiconazole, dimethoate, imidacloprid and thiacloprid) found to be synergistic or antagonistic with the classic approach. The results showed an accurate simulation of synergistic and antagonistic effects for the different tested species and mixtures. This modelling approach can identify interactions accounting for the entire time of exposure, and not only at one time point as in the classic approach, and provides predictions of the mixture effect for untested mixture exposure scenarios, including those with time-variable mixture composition.
化学混合物毒性评估是生态毒理学中的主要挑战之一。化学品可以相互作用,导致比预期更多或更少的影响,分别通常称为协同作用和拮抗作用。评估混合物效应的经典特定方法是基于单点的剂量-反应曲线,并且仅限于识别混合物相互作用,但不能为未测试的暴露持续时间提供预测,也不能为暴露随时间变化的情况提供预测。我们在这里提出了一种使用毒代动力学-毒效动力学建模的新方法:生存的通用统一阈值模型(GUTS)框架,该框架最近扩展用于混合物毒性评估。我们设计了一个专门的机制相互作用模块,与 GUTS 混合物模型相结合,以:i)识别相互作用,ii)测试假设以确定哪种化学物质可能是相互作用的原因,最后 iii)模拟和预测协同和拮抗混合物的效果。我们使用两种物种(Enchytraeus crypticus 和 Mamestra brassicae)暴露于不同的潜在协同混合物(由:prochloraz、imidacloprid、cypermethrin、azoxystrobin、chlorothalonil 和 chlorpyrifos 组成)实验测试了该建模方法。此外,我们还使用先前发表的关于两种其他物种(Bombus terrestris 和 Daphnia magna)暴露于农药混合物(clothianidin、propiconazole、dimethoate、imidacloprid 和 thiacloprid)的实验数据测试了该模型,这些混合物与经典方法相比被发现具有协同作用或拮抗作用。结果表明,该模型能够准确模拟不同测试物种和混合物的协同和拮抗作用。这种建模方法可以识别考虑整个暴露时间的相互作用,而不仅仅是在经典方法中的一个时间点,并且可以为未测试的混合物暴露情况提供混合物效应的预测,包括那些具有时间变化的混合物组成的情况。