Schunck Florian, Kodritsch Bernhard, Krauss Martin, Busch Wibke, Focks Andreas
Osnabrück University, Barbarastr. 12, 49076 Osnabrück, Germany.
Helmholtz-Centre for Environmental Research GmbH-UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
Environ Sci Technol. 2024 Dec 17;58(50):21942-21953. doi: 10.1021/acs.est.4c06267. Epub 2024 Dec 4.
The immense production of the chemical industry requires an improved predictive risk assessment that can handle constantly evolving challenges while reducing the dependency of risk assessment on animal testing. Integrating omics data into mechanistic models offers a promising solution by linking cellular processes triggered after chemical exposure with observed effects in the organism. With the emerging availability of time-resolved RNA data, the goal of integrating gene expression data into mechanistic models can be approached. We propose a biologically anchored TKTD model, which describes key processes that link the gene expression level of the stress regulator to detoxification and lethality by associating toxicodynamic damage with expression. Fitting such a model to complex data sets consisting of multiple endpoints required the combination of methods from molecular biology, mechanistic dynamic systems modeling, and Bayesian inference. In this study, we successfully integrate time-resolved gene expression data into TKTD models and thus provide a method for assessing the influence of molecular markers on survival. This novel method was used to test whether can be applied to predict lethality in zebrafish embryos. With the presented approach, we outline a method to successfully approach the goal of a predictive risk assessment based on molecular data.
化学工业的巨大产量需要改进的预测性风险评估,这种评估能够应对不断演变的挑战,同时减少风险评估对动物试验的依赖。将组学数据整合到机理模型中,通过将化学物质暴露后触发的细胞过程与生物体中观察到的效应联系起来,提供了一个有前景的解决方案。随着时间分辨RNA数据的不断涌现,将基因表达数据整合到机理模型的目标可以实现。我们提出了一种基于生物学的毒物动力学-毒物效应动力学(TKTD)模型,该模型通过将毒效动力学损伤与基因表达相关联,描述了将应激调节因子的基因表达水平与解毒和致死性联系起来的关键过程。将这样一个模型应用于由多个终点组成的复杂数据集,需要结合分子生物学、机理动态系统建模和贝叶斯推理等方法。在本研究中,我们成功地将时间分辨基因表达数据整合到TKTD模型中,从而提供了一种评估分子标记对生存影响的方法。这种新方法用于测试是否可应用于预测斑马鱼胚胎的致死率。通过所提出的方法,我们概述了一种成功实现基于分子数据的预测性风险评估目标的方法。