Suppr超能文献

用于穆勒矩阵显微镜去噪的深度学习

Deep learning for denoising in a Mueller matrix microscope.

作者信息

Yang Xiongjie, Zhao Qianhao, Huang Tongyu, Hu Zheng, Bu Tongjun, He Honghui, Hou Anli, Li Migao, Xiao Yucheng, Ma Hui

机构信息

Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

Contributed equally.

出版信息

Biomed Opt Express. 2022 May 24;13(6):3535-3551. doi: 10.1364/BOE.457219. eCollection 2022 Jun 1.

Abstract

The Mueller matrix microscope is a powerful tool for characterizing the microstructural features of a complex biological sample. Performance of a Mueller matrix microscope usually relies on two major specifications: measurement accuracy and acquisition time, which may conflict with each other but both contribute to the complexity and expenses of the apparatus. In this paper, we report a learning-based method to improve both specifications of a Mueller matrix microscope using a rotating polarizer and a rotating waveplate polarization state generator. Low noise data from long acquisition time are used as the ground truth. A modified U-Net structured network incorporating channel attention effectively reduces the noise in lower quality Mueller matrix images obtained with much shorter acquisition time. The experimental results show that using high quality Mueller matrix data as ground truth, such a learning-based method can achieve both high measurement accuracy and short acquisition time in polarization imaging.

摘要

穆勒矩阵显微镜是用于表征复杂生物样品微观结构特征的强大工具。穆勒矩阵显微镜的性能通常依赖于两个主要指标:测量精度和采集时间,这两者可能相互冲突,但都增加了仪器的复杂性和成本。在本文中,我们报告了一种基于学习的方法,使用旋转偏振器和旋转波片偏振态发生器来提高穆勒矩阵显微镜的这两个指标。来自长时间采集的低噪声数据用作基准真值。结合通道注意力的改进型U-Net结构网络有效地降低了在短得多的采集时间下获得的低质量穆勒矩阵图像中的噪声。实验结果表明,以高质量的穆勒矩阵数据作为基准真值,这种基于学习的方法在偏振成像中可以实现高测量精度和短采集时间。

相似文献

1
Deep learning for denoising in a Mueller matrix microscope.
Biomed Opt Express. 2022 May 24;13(6):3535-3551. doi: 10.1364/BOE.457219. eCollection 2022 Jun 1.
2
4
Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging.
J Biomed Opt. 2018 Jan;23(1):1-8. doi: 10.1117/1.JBO.23.1.016007.
5
Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope.
Micron. 2015 Dec;79:8-15. doi: 10.1016/j.micron.2015.07.014. Epub 2015 Aug 3.
6
Mueller matrix imaging microscope using dual continuously rotating anisotropic mirrors.
Opt Express. 2021 Aug 30;29(18):28704-28724. doi: 10.1364/OE.435972.
7
Fast Mueller matrix microscope based on dual DoFP polarimeters.
Opt Lett. 2021 Apr 1;46(7):1676-1679. doi: 10.1364/OL.421394.
8
Spectroscopic Mueller matrix polarimeter based on spectro-temporal modulation.
Opt Express. 2020 Dec 7;28(25):37758-37772. doi: 10.1364/OE.409256.
10
Differential Mueller matrix imaging of partially depolarizing optically anisotropic biological tissues.
Lasers Med Sci. 2020 Jun;35(4):877-891. doi: 10.1007/s10103-019-02878-2. Epub 2019 Nov 20.

引用本文的文献

1
Near-real-time Mueller polarimetric image processing for neurosurgical intervention.
Int J Comput Assist Radiol Surg. 2024 Jun;19(6):1033-1043. doi: 10.1007/s11548-024-03090-6. Epub 2024 Mar 19.
2
Harnessing the power of optical microscopy for visualization and analysis of histopathological images.
Biomed Opt Express. 2023 Sep 26;14(10):5451-5465. doi: 10.1364/BOE.501893. eCollection 2023 Oct 1.

本文引用的文献

1
Deep-learning two-photon fiberscopy for video-rate brain imaging in freely-behaving mice.
Nat Commun. 2022 Mar 22;13(1):1534. doi: 10.1038/s41467-022-29236-1.
2
Computational interference microscopy enabled by deep learning.
APL Photonics. 2021 Apr;6(4). doi: 10.1063/5.0041901. Epub 2021 Apr 6.
3
4
Polarisation optics for biomedical and clinical applications: a review.
Light Sci Appl. 2021 Sep 22;10(1):194. doi: 10.1038/s41377-021-00639-x.
5
A Polarization-Imaging-Based Machine Learning Framework for Quantitative Pathological Diagnosis of Cervical Precancerous Lesions.
IEEE Trans Med Imaging. 2021 Dec;40(12):3728-3738. doi: 10.1109/TMI.2021.3097200. Epub 2021 Nov 30.
6
Fast Mueller matrix microscope based on dual DoFP polarimeters.
Opt Lett. 2021 Apr 1;46(7):1676-1679. doi: 10.1364/OL.421394.
7
Deriving Polarimetry Feature Parameters to Characterize Microstructural Features in Histological Sections of Breast Tissues.
IEEE Trans Biomed Eng. 2021 Mar;68(3):881-892. doi: 10.1109/TBME.2020.3019755. Epub 2021 Feb 18.
8
Learning-based denoising for polarimetric images.
Opt Express. 2020 May 25;28(11):16309-16321. doi: 10.1364/OE.391017.
10
Phase recovery and holographic image reconstruction using deep learning in neural networks.
Light Sci Appl. 2018 Feb 23;7:17141. doi: 10.1038/lsa.2017.141. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验