Suppr超能文献

利用光学显微镜的力量进行组织病理学图像的可视化和分析。

Harnessing the power of optical microscopy for visualization and analysis of histopathological images.

作者信息

Wang Nan, Zhang Chang, Wei Xinyu, Yan Tianyu, Zhou Wangting, Zhang Jiaojiao, Kang Huan, Yuan Zhen, Chen Xueli

机构信息

Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.

Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.

出版信息

Biomed Opt Express. 2023 Sep 26;14(10):5451-5465. doi: 10.1364/BOE.501893. eCollection 2023 Oct 1.

Abstract

Histopathology is the foundation and gold standard for identifying diseases, and precise quantification of histopathological images can provide the pathologist with objective clues to make a more convincing diagnosis. Optical microscopy (OM), an important branch of optical imaging technology that provides high-resolution images of tissue cytology and structural morphology, has been used in the diagnosis of histopathology and evolved into a new disciplinary direction of optical microscopic histopathology (OMH). There are a number of studies providing applicability of different OMH approaches, and a transfer of these techniques toward diagnosis is currently in progress. Furthermore, combined with advanced artificial intelligence algorithms, OMH allows for improved diagnostic reliability and convenience due to the complementarity of retrieval information. In this review, we cover recent advances in OMH, including the exploration of new techniques in OMH as well as their applications, and look ahead to new challenges in OMH. These typical application examples well demonstrate the application potential and clinical value of OMH techniques in histopathological diagnosis.

摘要

组织病理学是疾病诊断的基础和金标准,对组织病理学图像进行精确量化可为病理学家提供客观线索,从而做出更具说服力的诊断。光学显微镜(OM)是光学成像技术的一个重要分支,可提供组织细胞学和结构形态的高分辨率图像,已被用于组织病理学诊断,并发展成为光学显微镜组织病理学(OMH)这一新的学科方向。有许多研究提供了不同OMH方法的适用性,目前这些技术正朝着诊断方向转化。此外,结合先进的人工智能算法,由于检索信息的互补性,OMH可提高诊断的可靠性和便利性。在本综述中,我们涵盖了OMH的最新进展,包括OMH新技术的探索及其应用,并展望了OMH面临的新挑战。这些典型应用实例很好地展示了OMH技术在组织病理学诊断中的应用潜力和临床价值。

相似文献

5
Oncology Medical Home: ASCO and COA Standards.肿瘤医学之家:ASCO 和 COA 标准。
JCO Oncol Pract. 2021 Aug;17(8):475-492. doi: 10.1200/OP.21.00167. Epub 2021 Jul 13.
7
Advanced Imaging Techniques for the Pathologist.面向病理学家的先进成像技术。
Clin Lab Med. 2016 Mar;36(1):89-99. doi: 10.1016/j.cll.2015.09.009.

本文引用的文献

6
Deep learning for denoising in a Mueller matrix microscope.用于穆勒矩阵显微镜去噪的深度学习
Biomed Opt Express. 2022 May 24;13(6):3535-3551. doi: 10.1364/BOE.457219. eCollection 2022 Jun 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验