Liu Jikui, Miao Fen, Yin Liyan, Pang Zhiqiang, Li Ye
Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 China.
Shenzhen College of Advanced TechnologyUniversity of Chinese Academy of Sciences Shenzhen 518055 China.
IEEE Internet Things J. 2021 Mar 4;8(21):15807-15817. doi: 10.1109/JIOT.2021.3063549. eCollection 2021 Nov 1.
We developed a ballistocardiography (BCG)-based Internet-of-Medical-Things (IoMT) system for remote monitoring of cardiopulmonary health. The system composes of BCG sensor, edge node, and cloud platform. To improve computational efficiency and system stability, the system adopted collaborative computing between edge nodes and cloud platforms. Edge nodes undertake signal processing tasks, namely approximate entropy for signal quality assessment, a lifting wavelet scheme for separating the BCG and respiration signal, and the lightweight BCG and respiration signal peaks detection. Heart rate variability (HRV), respiratory rate variability (RRV) analysis and other intelligent computing are performed on cloud platform. In experiments with 25 participants, the proposed method achieved a mean absolute error (MAE)±standard deviation of absolute error (SDAE) of 9.6±8.2 ms for heartbeat intervals detection, and a MAE±SDAE of 22.4±31.1 ms for respiration intervals detection. To study the recovery of cardiopulmonary function in patients with coronavirus disease 2019 (COVID-19), this study recruited 186 discharged patients with COVID-19 and 186 control volunteers. The results indicate that the recovery performance of the respiratory rhythm is better than the heart rhythm among discharged patients with COVID-19. This reminds the patients to be aware of the risk of cardiovascular disease after recovering from COVID-19. Therefore, our remote monitoring system has the ability to play a major role in the follow up and management of discharged patients with COVID-19.
我们开发了一种基于心冲击图(BCG)的医疗物联网(IoMT)系统,用于远程监测心肺健康。该系统由BCG传感器、边缘节点和云平台组成。为了提高计算效率和系统稳定性,该系统采用了边缘节点和云平台之间的协同计算。边缘节点承担信号处理任务,即用于信号质量评估的近似熵、用于分离BCG和呼吸信号的提升小波方案,以及轻量级的BCG和呼吸信号峰值检测。心率变异性(HRV)、呼吸率变异性(RRV)分析等智能计算在云平台上进行。在对25名参与者的实验中,该方法在心跳间期检测方面实现了平均绝对误差(MAE)±绝对误差标准差(SDAE)为9.6±8.2毫秒,在呼吸间期检测方面实现了MAE±SDAE为22.4±31.1毫秒。为了研究2019冠状病毒病(COVID-19)患者心肺功能的恢复情况,本研究招募了186名COVID-19出院患者和186名对照志愿者。结果表明,COVID-19出院患者的呼吸节律恢复情况优于心律。这提醒患者在从COVID-19康复后要意识到心血管疾病的风险。因此,我们的远程监测系统有能力在COVID-19出院患者的随访和管理中发挥重要作用。