Suppr超能文献

HSF-IBI:一种从异构非侵入式传感器提取心跳间期的通用框架。

HSF-IBI: A Universal Framework for Extracting Inter-Beat Interval from Heterogeneous Unobtrusive Sensors.

作者信息

Bai Zhongrui, Wu Pang, Geng Fanglin, Zhang Hao, Chen Xianxiang, Du Lidong, Wang Peng, Li Xiaoran, Fang Zhen, Wu Yirong

机构信息

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Bioengineering (Basel). 2024 Dec 2;11(12):1219. doi: 10.3390/bioengineering11121219.

Abstract

Heartbeat inter-beat interval (IBI) extraction is a crucial technology for unobtrusive vital sign monitoring, yet its precision and robustness remain challenging. A promising approach is fusing heartbeat signals from different types of unobtrusive sensors. This paper introduces HSF-IBI, a novel and universal framework for unobtrusive IBI extraction using heterogeneous sensor fusion. Specifically, harmonic summation (HarSum) is employed for calculating the average heart rate, which in turn guides the selection of the optimal band selection (OBS), the basic sequential algorithmic scheme (BSAS)-based template group extraction, and the template matching (TM) procedure. The optimal IBIs are determined by evaluating the signal quality index (SQI) for each heartbeat. The algorithm is morphology-independent and can be adapted to different sensors. The proposed algorithm framework is evaluated on a self-collected dataset including 19 healthy participants and an open-source dataset including 34 healthy participants, both containing heterogeneous sensors. The experimental results demonstrate that (1) the proposed framework successfully integrates data from heterogeneous sensors, leading to detection rate enhancements of 6.25 % and 5.21 % on two datasets, and (2) the proposed framework achieves superior accuracy over existing IBI extraction methods, with mean absolute errors (MAEs) of 5.25 ms and 4.56 ms on two datasets.

摘要

心跳间期(IBI)提取是无创生命体征监测的一项关键技术,但其精度和稳健性仍具有挑战性。一种有前景的方法是融合来自不同类型无创传感器的心跳信号。本文介绍了HSF-IBI,这是一种使用异构传感器融合进行无创IBI提取的新颖通用框架。具体而言,采用谐波求和(HarSum)来计算平均心率,进而指导最优频段选择(OBS)、基于基本顺序算法方案(BSAS)的模板组提取以及模板匹配(TM)过程的选择。通过评估每个心跳的信号质量指数(SQI)来确定最优IBI。该算法与形态无关,可适用于不同传感器。所提出的算法框架在一个包含19名健康参与者的自收集数据集和一个包含34名健康参与者的开源数据集上进行了评估,这两个数据集均包含异构传感器。实验结果表明:(1)所提出的框架成功整合了来自异构传感器的数据,在两个数据集上的检测率分别提高了6.25%和5.21%;(2)所提出的框架比现有的IBI提取方法具有更高的精度,在两个数据集上的平均绝对误差(MAE)分别为5.25毫秒和4.56毫秒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37c2/11673224/3951ad6bc6a5/bioengineering-11-01219-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验