Suppr超能文献

应用机器学习检测罕见病的临床研究:结果与经验教训

Clinical study applying machine learning to detect a rare disease: results and lessons learned.

作者信息

Hersh William R, Cohen Aaron M, Nguyen Michelle M, Bensching Katherine L, Deloughery Thomas G

机构信息

Department of Medical Informatics & Clinical Epidemiology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA.

Department of Medicine, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA.

出版信息

JAMIA Open. 2022 Jun 30;5(2):ooac053. doi: 10.1093/jamiaopen/ooac053. eCollection 2022 Jul.

Abstract

Machine learning has the potential to improve identification of patients for appropriate diagnostic testing and treatment, including those who have rare diseases for which effective treatments are available, such as acute hepatic porphyria (AHP). We trained a machine learning model on 205 571 complete electronic health records from a single medical center based on 30 known cases to identify 22 patients with classic symptoms of AHP that had neither been diagnosed nor tested for AHP. We offered urine porphobilinogen testing to these patients via their clinicians. Of the 7 who agreed to testing, none were positive for AHP. We explore the reasons for this and provide lessons learned for further work evaluating machine learning to detect AHP and other rare diseases.

摘要

机器学习有潜力改善对患者的识别,以便进行适当的诊断测试和治疗,包括那些患有可获得有效治疗的罕见疾病的患者,如急性肝卟啉症(AHP)。我们基于30个已知病例,在来自单一医疗中心的205571份完整电子健康记录上训练了一个机器学习模型,以识别22名有AHP典型症状但既未被诊断也未接受过AHP检测的患者。我们通过这些患者的临床医生为他们提供尿卟胆原检测。在同意检测的7名患者中,没有一人AHP呈阳性。我们探究了其中的原因,并为进一步评估机器学习以检测AHP和其他罕见疾病的工作提供了经验教训。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bff/9243401/7df5e7d17693/ooac053f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验