Yang Zeyu, Shikany Amy, Husami Ammar, Wang Xinjian, Mendonca Eneida, Nicole Weaver K, Chen Jing
School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
NPJ Genom Med. 2025 Jul 21;10(1):56. doi: 10.1038/s41525-025-00512-5.
Despite advanced diagnostic tools, early detection of rare genetic conditions like Noonan syndrome (NS) remains challenging. We evaluated a deep learning model's real-world performance in identifying potential NS cases using electronic health record (EHR) data, validated through genetic sequencing and clinical assessment. The model analyzed 92,428 patients, identifying 171 high-risk individuals (score > 0.8) who underwent comprehensive review. Among these, 86 had prior genetic diagnoses, including three NS cases diagnosed during the study period. Genetic sequencing of remaining patients identified two additional NS cases with pathogenic variants. The model achieved 2.92% precision and 99.82% specificity. While precision was lower than prior validation (33.3%), this reflected expected differences in disease prevalence rather than model degradation. NS-associated phenotypes were enriched among high-risk patients, and trajectory analysis showed potential for earlier identification, highlighting both promise and limitations of EHR-based computational screening tools.
尽管有先进的诊断工具,但像努南综合征(NS)这样的罕见遗传病的早期检测仍然具有挑战性。我们评估了一个深度学习模型在使用电子健康记录(EHR)数据识别潜在NS病例方面的实际性能,并通过基因测序和临床评估进行了验证。该模型分析了92428名患者,确定了171名高危个体(得分>0.8),这些个体接受了全面审查。其中,86人有先前的基因诊断,包括在研究期间诊断出的3例NS病例。其余患者的基因测序又发现了2例携带致病变异的NS病例。该模型的精确率为2.92%,特异性为99.82%。虽然精确率低于先前的验证结果(33.3%),但这反映了疾病患病率的预期差异,而非模型性能下降。高危患者中与NS相关的表型更为丰富,轨迹分析显示有更早识别的潜力,这凸显了基于EHR的计算筛查工具的前景和局限性。
Clin Orthop Relat Res. 2024-9-1
Cochrane Database Syst Rev. 2024-10-17
Cochrane Database Syst Rev. 2022-6-6
J Clin Endocrinol Metab. 2025-7-13
Cochrane Database Syst Rev. 2022-3-23
BMC Genomics. 2024-9-16
Nucleic Acids Res. 2024-1-5
Circ Genom Precis Med. 2022-8
Arch Dis Child. 2022-12