文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

测序验证了用于基于电子健康记录检测儿科患者努南综合征的深度学习模型。

Sequencing validates deep learning models for EHR-based detection of Noonan syndrome in pediatric patients.

作者信息

Yang Zeyu, Shikany Amy, Husami Ammar, Wang Xinjian, Mendonca Eneida, Nicole Weaver K, Chen Jing

机构信息

School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.

Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

出版信息

NPJ Genom Med. 2025 Jul 21;10(1):56. doi: 10.1038/s41525-025-00512-5.


DOI:10.1038/s41525-025-00512-5
PMID:40691161
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12280026/
Abstract

Despite advanced diagnostic tools, early detection of rare genetic conditions like Noonan syndrome (NS) remains challenging. We evaluated a deep learning model's real-world performance in identifying potential NS cases using electronic health record (EHR) data, validated through genetic sequencing and clinical assessment. The model analyzed 92,428 patients, identifying 171 high-risk individuals (score > 0.8) who underwent comprehensive review. Among these, 86 had prior genetic diagnoses, including three NS cases diagnosed during the study period. Genetic sequencing of remaining patients identified two additional NS cases with pathogenic variants. The model achieved 2.92% precision and 99.82% specificity. While precision was lower than prior validation (33.3%), this reflected expected differences in disease prevalence rather than model degradation. NS-associated phenotypes were enriched among high-risk patients, and trajectory analysis showed potential for earlier identification, highlighting both promise and limitations of EHR-based computational screening tools.

摘要

尽管有先进的诊断工具,但像努南综合征(NS)这样的罕见遗传病的早期检测仍然具有挑战性。我们评估了一个深度学习模型在使用电子健康记录(EHR)数据识别潜在NS病例方面的实际性能,并通过基因测序和临床评估进行了验证。该模型分析了92428名患者,确定了171名高危个体(得分>0.8),这些个体接受了全面审查。其中,86人有先前的基因诊断,包括在研究期间诊断出的3例NS病例。其余患者的基因测序又发现了2例携带致病变异的NS病例。该模型的精确率为2.92%,特异性为99.82%。虽然精确率低于先前的验证结果(33.3%),但这反映了疾病患病率的预期差异,而非模型性能下降。高危患者中与NS相关的表型更为丰富,轨迹分析显示有更早识别的潜力,这凸显了基于EHR的计算筛查工具的前景和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2552/12280026/7a809059177d/41525_2025_512_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2552/12280026/a40e99eb77c5/41525_2025_512_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2552/12280026/6e514e996363/41525_2025_512_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2552/12280026/7a809059177d/41525_2025_512_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2552/12280026/a40e99eb77c5/41525_2025_512_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2552/12280026/6e514e996363/41525_2025_512_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2552/12280026/7a809059177d/41525_2025_512_Fig3_HTML.jpg

相似文献

[1]
Sequencing validates deep learning models for EHR-based detection of Noonan syndrome in pediatric patients.

NPJ Genom Med. 2025-7-21

[2]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[3]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[4]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[5]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[6]
Guaiac-based faecal occult blood tests versus faecal immunochemical tests for colorectal cancer screening in average-risk individuals.

Cochrane Database Syst Rev. 2022-6-6

[7]
Cannabis use, risk of cannabis use disorder, and anxiety and depression among bisexual patients: A comparative study of sex and sexual identity differences in a large health system.

Drug Alcohol Depend. 2025-6-20

[8]
Preexisting Diabetes and Pregnancy: An Endocrine Society and European Society of Endocrinology Joint Clinical Practice Guideline.

J Clin Endocrinol Metab. 2025-7-13

[9]
Preexisting Diabetes and Pregnancy: An Endocrine Society and European Society of Endocrinology Joint Clinical Practice Guideline.

Eur J Endocrinol. 2025-6-30

[10]
Symptom- and chest-radiography screening for active pulmonary tuberculosis in HIV-negative adults and adults with unknown HIV status.

Cochrane Database Syst Rev. 2022-3-23

本文引用的文献

[1]
Updated ACMG/AMP specifications for variant interpretation and gene curations from the ClinGen RASopathy expert panels.

Genet Med Open. 2025-4-17

[2]
simona: a comprehensive R package for semantic similarity analysis on bio-ontologies.

BMC Genomics. 2024-9-16

[3]
Estimating prevalence of rare genetic disease diagnoses using electronic health records in a children's hospital.

HGG Adv. 2024-10-10

[4]
The Monarch Initiative in 2024: an analytic platform integrating phenotypes, genes and diseases across species.

Nucleic Acids Res. 2024-1-5

[5]
The Human Phenotype Ontology in 2024: phenotypes around the world.

Nucleic Acids Res. 2024-1-5

[6]
Helsmoortel-Van der Aa Syndrome-Cardiothoracic and Ectodermal Manifestations in Two Patients as Further Support of a Previous Observation on Phenotypic Overlap with RASopathies.

Genes (Basel). 2022-12-15

[7]
Using deep learning and electronic health records to detect Noonan syndrome in pediatric patients.

Genet Med. 2022-11

[8]
Clinical study applying machine learning to detect a rare disease: results and lessons learned.

JAMIA Open. 2022-6-30

[9]
Prevalence of Genetic Diagnoses in a Cohort With Valvar Pulmonary Stenosis.

Circ Genom Precis Med. 2022-8

[10]
Noonan syndrome: improving recognition and diagnosis.

Arch Dis Child. 2022-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索